Description: If the sum of two squares is prime, none of the original number is zero. (Contributed by Thierry Arnoux, 4-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2sqcoprm.1 | |
|
2sqcoprm.2 | |
||
2sqcoprm.3 | |
||
2sqcoprm.4 | |
||
Assertion | 2sqn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqcoprm.1 | |
|
2 | 2sqcoprm.2 | |
|
3 | 2sqcoprm.3 | |
|
4 | 2sqcoprm.4 | |
|
5 | 4 1 | eqeltrd | |
6 | 5 | adantr | |
7 | sq0i | |
|
8 | 7 | oveq1d | |
9 | 3 | zcnd | |
10 | 9 | sqcld | |
11 | 10 | addlidd | |
12 | 8 11 | sylan9eqr | |
13 | sqnprm | |
|
14 | 3 13 | syl | |
15 | 14 | adantr | |
16 | 12 15 | eqneltrd | |
17 | 6 16 | pm2.65da | |
18 | 17 | neqned | |