Metamath Proof Explorer


Theorem 3atlem6

Description: Lemma for 3at . (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses 3at.l ˙=K
3at.j ˙=joinK
3at.a A=AtomsK
Assertion 3atlem6 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U

Proof

Step Hyp Ref Expression
1 3at.l ˙=K
2 3at.j ˙=joinK
3 3at.a A=AtomsK
4 simp11 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UKHL
5 simp121 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UPA
6 simp122 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UQA
7 simp123 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙URA
8 2 3 hlatj32 KHLPAQARAP˙Q˙R=P˙R˙Q
9 4 5 6 7 8 syl13anc KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=P˙R˙Q
10 5 7 6 3jca KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UPARAQA
11 simp13 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙USATAUA
12 simp21 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙U¬R˙P˙Q
13 simp22 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UPQ
14 13 necomd KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UQP
15 1 2 3 hlatexch1 KHLQARAPAQPQ˙P˙RR˙P˙Q
16 4 6 7 5 14 15 syl131anc KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UQ˙P˙RR˙P˙Q
17 12 16 mtod KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙U¬Q˙P˙R
18 4 hllatd KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UKLat
19 eqid BaseK=BaseK
20 19 3 atbase RARBaseK
21 7 20 syl KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙URBaseK
22 19 3 atbase PAPBaseK
23 5 22 syl KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UPBaseK
24 19 3 atbase QAQBaseK
25 6 24 syl KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UQBaseK
26 19 1 2 latnlej1l KLatRBaseKPBaseKQBaseK¬R˙P˙QRP
27 26 necomd KLatRBaseKPBaseKQBaseK¬R˙P˙QPR
28 18 21 23 25 12 27 syl131anc KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UPR
29 simp23 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UQ˙P˙U
30 simp133 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UUA
31 1 2 3 hlatexchb1 KHLQAUAPAQPQ˙P˙UP˙Q=P˙U
32 4 6 30 5 14 31 syl131anc KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UQ˙P˙UP˙Q=P˙U
33 29 32 mpbid KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UP˙Q=P˙U
34 33 breq2d KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UR˙P˙QR˙P˙U
35 12 34 mtbid KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙U¬R˙P˙U
36 simp3 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R˙S˙T˙U
37 9 36 eqbrtrrd KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UP˙R˙Q˙S˙T˙U
38 1 2 3 3atlem5 KHLPARAQASATAUA¬Q˙P˙RPR¬R˙P˙UP˙R˙Q˙S˙T˙UP˙R˙Q=S˙T˙U
39 4 10 11 17 28 35 37 38 syl331anc KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UP˙R˙Q=S˙T˙U
40 9 39 eqtrd KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U