Metamath Proof Explorer


Theorem 3dim1

Description: Construct a 3-dimensional volume (height-4 element) on top of a given atom P . (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙=joinK
3dim0.l ˙=K
3dim0.a A=AtomsK
Assertion 3dim1 KHLPAqArAsAPq¬r˙P˙q¬s˙P˙q˙r

Proof

Step Hyp Ref Expression
1 3dim0.j ˙=joinK
2 3dim0.l ˙=K
3 3dim0.a A=AtomsK
4 1 2 3 3dim0 KHLtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙v
5 4 adantr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙v
6 simpl2 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vP=tuAvAwA
7 1 2 3 3dimlem1 tu¬v˙t˙u¬w˙t˙u˙vP=tPu¬v˙P˙u¬w˙P˙u˙v
8 7 3ad2antl3 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vP=tPu¬v˙P˙u¬w˙P˙u˙v
9 1 2 3 3dim1lem5 uAvAwAPu¬v˙P˙u¬w˙P˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
10 6 8 9 syl2anc KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vP=tqArAsAPq¬r˙P˙q¬s˙P˙q˙r
11 simp13 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vtA
12 simp22 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vvA
13 simp23 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vwA
14 11 12 13 3jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vtAvAwA
15 14 ad2antrr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPtP˙t˙utAvAwA
16 simpll1 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPtP˙t˙uKHLPAtA
17 simp21 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vuA
18 simp32 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙v¬v˙t˙u
19 simp33 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙v¬w˙t˙u˙v
20 17 18 19 3jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vuA¬v˙t˙u¬w˙t˙u˙v
21 20 ad2antrr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPtP˙t˙uuA¬v˙t˙u¬w˙t˙u˙v
22 simplr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPtP˙t˙uPt
23 simpr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPtP˙t˙uP˙t˙u
24 1 2 3 3dimlem2 KHLPAtAuA¬v˙t˙u¬w˙t˙u˙vPtP˙t˙uPt¬v˙P˙t¬w˙P˙t˙v
25 16 21 22 23 24 syl112anc KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPtP˙t˙uPt¬v˙P˙t¬w˙P˙t˙v
26 1 2 3 3dim1lem5 tAvAwAPt¬v˙P˙t¬w˙P˙t˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
27 15 25 26 syl2anc KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPtP˙t˙uqArAsAPq¬r˙P˙q¬s˙P˙q˙r
28 11 17 13 3jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vtAuAwA
29 28 ad2antrr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uP˙t˙u˙vtAuAwA
30 simp1 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vKHLPAtA
31 17 12 jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vuAvA
32 simp31 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vtu
33 32 19 jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vtu¬w˙t˙u˙v
34 30 31 33 3jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vKHLPAtAuAvAtu¬w˙t˙u˙v
35 34 ad2antrr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uP˙t˙u˙vKHLPAtAuAvAtu¬w˙t˙u˙v
36 simplrl KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uP˙t˙u˙vPt
37 simplrr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uP˙t˙u˙v¬P˙t˙u
38 simpr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uP˙t˙u˙vP˙t˙u˙v
39 1 2 3 3dimlem3 KHLPAtAuAvAtu¬w˙t˙u˙vPt¬P˙t˙uP˙t˙u˙vPt¬u˙P˙t¬w˙P˙t˙u
40 35 36 37 38 39 syl13anc KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uP˙t˙u˙vPt¬u˙P˙t¬w˙P˙t˙u
41 1 2 3 3dim1lem5 tAuAwAPt¬u˙P˙t¬w˙P˙t˙uqArAsAPq¬r˙P˙q¬s˙P˙q˙r
42 29 40 41 syl2anc KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uP˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
43 11 17 12 3jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vtAuAvA
44 43 ad2antrr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙u¬P˙t˙u˙vtAuAvA
45 simpl1 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uKHLPAtA
46 simpl21 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uuA
47 simpl22 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uvA
48 46 47 jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uuAvA
49 simpl31 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙utu
50 simpl32 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙u¬v˙t˙u
51 49 50 jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙utu¬v˙t˙u
52 45 48 51 3jca KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uKHLPAtAuAvAtu¬v˙t˙u
53 52 adantr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙u¬P˙t˙u˙vKHLPAtAuAvAtu¬v˙t˙u
54 simplr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙u¬P˙t˙u˙vPt¬P˙t˙u
55 simpr KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙u¬P˙t˙u˙v¬P˙t˙u˙v
56 1 2 3 3dimlem4 KHLPAtAuAvAtu¬v˙t˙uPt¬P˙t˙u¬P˙t˙u˙vPt¬u˙P˙t¬v˙P˙t˙u
57 53 54 55 56 syl3anc KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙u¬P˙t˙u˙vPt¬u˙P˙t¬v˙P˙t˙u
58 1 2 3 3dim1lem5 tAuAvAPt¬u˙P˙t¬v˙P˙t˙uqArAsAPq¬r˙P˙q¬s˙P˙q˙r
59 44 57 58 syl2anc KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙u¬P˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
60 42 59 pm2.61dan KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uqArAsAPq¬r˙P˙q¬s˙P˙q˙r
61 60 anassrs KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPt¬P˙t˙uqArAsAPq¬r˙P˙q¬s˙P˙q˙r
62 27 61 pm2.61dan KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vPtqArAsAPq¬r˙P˙q¬s˙P˙q˙r
63 10 62 pm2.61dane KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
64 63 3exp KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
65 64 3expd KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
66 65 3exp KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
67 66 imp43 KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
68 67 impd KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
69 68 rexlimdvv KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
70 69 rexlimdvva KHLPAtAuAvAwAtu¬v˙t˙u¬w˙t˙u˙vqArAsAPq¬r˙P˙q¬s˙P˙q˙r
71 5 70 mpd KHLPAqArAsAPq¬r˙P˙q¬s˙P˙q˙r