| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3dim0.j |
|
| 2 |
|
3dim0.l |
|
| 3 |
|
3dim0.a |
|
| 4 |
1 2 3
|
3dim0 |
|
| 5 |
4
|
adantr |
|
| 6 |
|
simpl2 |
|
| 7 |
1 2 3
|
3dimlem1 |
|
| 8 |
7
|
3ad2antl3 |
|
| 9 |
1 2 3
|
3dim1lem5 |
|
| 10 |
6 8 9
|
syl2anc |
|
| 11 |
|
simp13 |
|
| 12 |
|
simp22 |
|
| 13 |
|
simp23 |
|
| 14 |
11 12 13
|
3jca |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
simpll1 |
|
| 17 |
|
simp21 |
|
| 18 |
|
simp32 |
|
| 19 |
|
simp33 |
|
| 20 |
17 18 19
|
3jca |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
simplr |
|
| 23 |
|
simpr |
|
| 24 |
1 2 3
|
3dimlem2 |
|
| 25 |
16 21 22 23 24
|
syl112anc |
|
| 26 |
1 2 3
|
3dim1lem5 |
|
| 27 |
15 25 26
|
syl2anc |
|
| 28 |
11 17 13
|
3jca |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
|
simp1 |
|
| 31 |
17 12
|
jca |
|
| 32 |
|
simp31 |
|
| 33 |
32 19
|
jca |
|
| 34 |
30 31 33
|
3jca |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
simplrl |
|
| 37 |
|
simplrr |
|
| 38 |
|
simpr |
|
| 39 |
1 2 3
|
3dimlem3 |
|
| 40 |
35 36 37 38 39
|
syl13anc |
|
| 41 |
1 2 3
|
3dim1lem5 |
|
| 42 |
29 40 41
|
syl2anc |
|
| 43 |
11 17 12
|
3jca |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
|
simpl1 |
|
| 46 |
|
simpl21 |
|
| 47 |
|
simpl22 |
|
| 48 |
46 47
|
jca |
|
| 49 |
|
simpl31 |
|
| 50 |
|
simpl32 |
|
| 51 |
49 50
|
jca |
|
| 52 |
45 48 51
|
3jca |
|
| 53 |
52
|
adantr |
|
| 54 |
|
simplr |
|
| 55 |
|
simpr |
|
| 56 |
1 2 3
|
3dimlem4 |
|
| 57 |
53 54 55 56
|
syl3anc |
|
| 58 |
1 2 3
|
3dim1lem5 |
|
| 59 |
44 57 58
|
syl2anc |
|
| 60 |
42 59
|
pm2.61dan |
|
| 61 |
60
|
anassrs |
|
| 62 |
27 61
|
pm2.61dan |
|
| 63 |
10 62
|
pm2.61dane |
|
| 64 |
63
|
3exp |
|
| 65 |
64
|
3expd |
|
| 66 |
65
|
3exp |
|
| 67 |
66
|
imp43 |
|
| 68 |
67
|
impd |
|
| 69 |
68
|
rexlimdvv |
|
| 70 |
69
|
rexlimdvva |
|
| 71 |
5 70
|
mpd |
|