Metamath Proof Explorer


Theorem 3noncolr2

Description: Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012)

Ref Expression
Hypotheses 3noncol.l ˙=K
3noncol.j ˙=joinK
3noncol.a A=AtomsK
Assertion 3noncolr2 KHLPAQARAPQ¬R˙P˙QQR¬P˙Q˙R

Proof

Step Hyp Ref Expression
1 3noncol.l ˙=K
2 3noncol.j ˙=joinK
3 3noncol.a A=AtomsK
4 hllat KHLKLat
5 4 3ad2ant1 KHLPAQARAPQ¬R˙P˙QKLat
6 simp23 KHLPAQARAPQ¬R˙P˙QRA
7 eqid BaseK=BaseK
8 7 3 atbase RARBaseK
9 6 8 syl KHLPAQARAPQ¬R˙P˙QRBaseK
10 simp21 KHLPAQARAPQ¬R˙P˙QPA
11 7 3 atbase PAPBaseK
12 10 11 syl KHLPAQARAPQ¬R˙P˙QPBaseK
13 simp22 KHLPAQARAPQ¬R˙P˙QQA
14 7 3 atbase QAQBaseK
15 13 14 syl KHLPAQARAPQ¬R˙P˙QQBaseK
16 simp3r KHLPAQARAPQ¬R˙P˙Q¬R˙P˙Q
17 7 1 2 latnlej1r KLatRBaseKPBaseKQBaseK¬R˙P˙QRQ
18 5 9 12 15 16 17 syl131anc KHLPAQARAPQ¬R˙P˙QRQ
19 18 necomd KHLPAQARAPQ¬R˙P˙QQR
20 simp1 KHLPAQARAPQ¬R˙P˙QKHL
21 simp3l KHLPAQARAPQ¬R˙P˙QPQ
22 1 2 3 hlatexch1 KHLPARAQAPQP˙Q˙RR˙Q˙P
23 20 10 6 13 21 22 syl131anc KHLPAQARAPQ¬R˙P˙QP˙Q˙RR˙Q˙P
24 2 3 hlatjcom KHLPAQAP˙Q=Q˙P
25 20 10 13 24 syl3anc KHLPAQARAPQ¬R˙P˙QP˙Q=Q˙P
26 25 breq2d KHLPAQARAPQ¬R˙P˙QR˙P˙QR˙Q˙P
27 23 26 sylibrd KHLPAQARAPQ¬R˙P˙QP˙Q˙RR˙P˙Q
28 16 27 mtod KHLPAQARAPQ¬R˙P˙Q¬P˙Q˙R
29 19 28 jca KHLPAQARAPQ¬R˙P˙QQR¬P˙Q˙R