Metamath Proof Explorer


Theorem 4atexlemswapqr

Description: Lemma for 4atexlem7 . Swap Q and R , so that theorems involving C can be reused for D . Note that U must be expanded because it involves Q . (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
4thatlemslps.l ˙ = K
4thatlemslps.j ˙ = join K
4thatlemslps.a A = Atoms K
4thatlemsw.u U = P ˙ Q ˙ W
Assertion 4atexlemswapqr φ K HL W H P A ¬ P ˙ W R A ¬ R ˙ W S A Q A ¬ Q ˙ W P ˙ Q = R ˙ Q T A P ˙ R ˙ W ˙ T = V ˙ T P R ¬ S ˙ P ˙ R

Proof

Step Hyp Ref Expression
1 4thatlem.ph φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q
2 4thatlemslps.l ˙ = K
3 4thatlemslps.j ˙ = join K
4 4thatlemslps.a A = Atoms K
5 4thatlemsw.u U = P ˙ Q ˙ W
6 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q K HL W H
7 1 6 sylbi φ K HL W H
8 1 4atexlempw φ P A ¬ P ˙ W
9 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q R A ¬ R ˙ W P ˙ R = Q ˙ R
10 3simpa R A ¬ R ˙ W P ˙ R = Q ˙ R R A ¬ R ˙ W
11 9 10 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q R A ¬ R ˙ W
12 1 11 sylbi φ R A ¬ R ˙ W
13 7 8 12 3jca φ K HL W H P A ¬ P ˙ W R A ¬ R ˙ W
14 1 4atexlems φ S A
15 1 4atexlemq φ Q A
16 simp13r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q ¬ Q ˙ W
17 1 16 sylbi φ ¬ Q ˙ W
18 1 4atexlemkc φ K CvLat
19 1 4atexlemp φ P A
20 12 simpld φ R A
21 1 4atexlempnq φ P Q
22 simp223 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A R A ¬ R ˙ W P ˙ R = Q ˙ R T A U ˙ T = V ˙ T P Q ¬ S ˙ P ˙ Q P ˙ R = Q ˙ R
23 1 22 sylbi φ P ˙ R = Q ˙ R
24 4 3 cvlsupr7 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q = R ˙ Q
25 18 19 15 20 21 23 24 syl132anc φ P ˙ Q = R ˙ Q
26 15 17 25 3jca φ Q A ¬ Q ˙ W P ˙ Q = R ˙ Q
27 1 4atexlemt φ T A
28 4 3 cvlsupr8 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P ˙ Q = P ˙ R
29 18 19 15 20 21 23 28 syl132anc φ P ˙ Q = P ˙ R
30 29 oveq1d φ P ˙ Q ˙ W = P ˙ R ˙ W
31 5 30 eqtrid φ U = P ˙ R ˙ W
32 31 oveq1d φ U ˙ T = P ˙ R ˙ W ˙ T
33 1 4atexlemutvt φ U ˙ T = V ˙ T
34 32 33 eqtr3d φ P ˙ R ˙ W ˙ T = V ˙ T
35 27 34 jca φ T A P ˙ R ˙ W ˙ T = V ˙ T
36 14 26 35 3jca φ S A Q A ¬ Q ˙ W P ˙ Q = R ˙ Q T A P ˙ R ˙ W ˙ T = V ˙ T
37 4 3 cvlsupr5 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R P
38 37 necomd K CvLat P A Q A R A P Q P ˙ R = Q ˙ R P R
39 18 19 15 20 21 23 38 syl132anc φ P R
40 1 4atexlemnslpq φ ¬ S ˙ P ˙ Q
41 29 eqcomd φ P ˙ R = P ˙ Q
42 41 breq2d φ S ˙ P ˙ R S ˙ P ˙ Q
43 40 42 mtbird φ ¬ S ˙ P ˙ R
44 39 43 jca φ P R ¬ S ˙ P ˙ R
45 13 36 44 3jca φ K HL W H P A ¬ P ˙ W R A ¬ R ˙ W S A Q A ¬ Q ˙ W P ˙ Q = R ˙ Q T A P ˙ R ˙ W ˙ T = V ˙ T P R ¬ S ˙ P ˙ R