Metamath Proof Explorer


Theorem 4atexlemswapqr

Description: Lemma for 4atexlem7 . Swap Q and R , so that theorems involving C can be reused for D . Note that U must be expanded because it involves Q . (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlemslps.l ˙=K
4thatlemslps.j ˙=joinK
4thatlemslps.a A=AtomsK
4thatlemsw.u U=P˙Q˙W
Assertion 4atexlemswapqr φKHLWHPA¬P˙WRA¬R˙WSAQA¬Q˙WP˙Q=R˙QTAP˙R˙W˙T=V˙TPR¬S˙P˙R

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlemslps.l ˙=K
3 4thatlemslps.j ˙=joinK
4 4thatlemslps.a A=AtomsK
5 4thatlemsw.u U=P˙Q˙W
6 simp11 KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙QKHLWH
7 1 6 sylbi φKHLWH
8 1 4atexlempw φPA¬P˙W
9 simp22 KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙QRA¬R˙WP˙R=Q˙R
10 3simpa RA¬R˙WP˙R=Q˙RRA¬R˙W
11 9 10 syl KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙QRA¬R˙W
12 1 11 sylbi φRA¬R˙W
13 7 8 12 3jca φKHLWHPA¬P˙WRA¬R˙W
14 1 4atexlems φSA
15 1 4atexlemq φQA
16 simp13r KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q¬Q˙W
17 1 16 sylbi φ¬Q˙W
18 1 4atexlemkc φKCvLat
19 1 4atexlemp φPA
20 12 simpld φRA
21 1 4atexlempnq φPQ
22 simp223 KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙QP˙R=Q˙R
23 1 22 sylbi φP˙R=Q˙R
24 4 3 cvlsupr7 KCvLatPAQARAPQP˙R=Q˙RP˙Q=R˙Q
25 18 19 15 20 21 23 24 syl132anc φP˙Q=R˙Q
26 15 17 25 3jca φQA¬Q˙WP˙Q=R˙Q
27 1 4atexlemt φTA
28 4 3 cvlsupr8 KCvLatPAQARAPQP˙R=Q˙RP˙Q=P˙R
29 18 19 15 20 21 23 28 syl132anc φP˙Q=P˙R
30 29 oveq1d φP˙Q˙W=P˙R˙W
31 5 30 eqtrid φU=P˙R˙W
32 31 oveq1d φU˙T=P˙R˙W˙T
33 1 4atexlemutvt φU˙T=V˙T
34 32 33 eqtr3d φP˙R˙W˙T=V˙T
35 27 34 jca φTAP˙R˙W˙T=V˙T
36 14 26 35 3jca φSAQA¬Q˙WP˙Q=R˙QTAP˙R˙W˙T=V˙T
37 4 3 cvlsupr5 KCvLatPAQARAPQP˙R=Q˙RRP
38 37 necomd KCvLatPAQARAPQP˙R=Q˙RPR
39 18 19 15 20 21 23 38 syl132anc φPR
40 1 4atexlemnslpq φ¬S˙P˙Q
41 29 eqcomd φP˙R=P˙Q
42 41 breq2d φS˙P˙RS˙P˙Q
43 40 42 mtbird φ¬S˙P˙R
44 39 43 jca φPR¬S˙P˙R
45 13 36 44 3jca φKHLWHPA¬P˙WRA¬R˙WSAQA¬Q˙WP˙Q=R˙QTAP˙R˙W˙T=V˙TPR¬S˙P˙R