Metamath Proof Explorer


Theorem 4atlem3b

Description: Lemma for 4at . Break inequality into 2 cases. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem3b KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙V¬S˙P˙Q˙V

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simp1 KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RKHLPAQA
5 simp21 KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RRA
6 simp22 KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RSA
7 5 6 jca KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RRASA
8 simp13 KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RQA
9 simp23 KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RVA
10 8 9 jca KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RQAVA
11 simp3 KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RPQ¬R˙P˙Q¬S˙P˙Q˙R
12 1 2 3 4atlem3a KHLPAQARASAQAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙Q˙V¬R˙P˙Q˙V¬S˙P˙Q˙V
13 4 7 10 11 12 syl31anc KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙Q˙V¬R˙P˙Q˙V¬S˙P˙Q˙V
14 3orass ¬Q˙P˙Q˙V¬R˙P˙Q˙V¬S˙P˙Q˙V¬Q˙P˙Q˙V¬R˙P˙Q˙V¬S˙P˙Q˙V
15 13 14 sylib KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙Q˙V¬R˙P˙Q˙V¬S˙P˙Q˙V
16 simp11 KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RKHL
17 16 hllatd KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RKLat
18 simp12 KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RPA
19 eqid BaseK=BaseK
20 19 2 3 hlatjcl KHLPAVAP˙VBaseK
21 16 18 9 20 syl3anc KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙VBaseK
22 19 3 atbase QAQBaseK
23 8 22 syl KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RQBaseK
24 19 1 2 latlej2 KLatP˙VBaseKQBaseKQ˙P˙V˙Q
25 17 21 23 24 syl3anc KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙V˙Q
26 2 3 hlatj32 KHLPAVAQAP˙V˙Q=P˙Q˙V
27 16 18 9 8 26 syl13anc KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙V˙Q=P˙Q˙V
28 25 27 breqtrd KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙Q˙V
29 biortn Q˙P˙Q˙V¬R˙P˙Q˙V¬S˙P˙Q˙V¬Q˙P˙Q˙V¬R˙P˙Q˙V¬S˙P˙Q˙V
30 28 29 syl KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙V¬S˙P˙Q˙V¬Q˙P˙Q˙V¬R˙P˙Q˙V¬S˙P˙Q˙V
31 15 30 mpbird KHLPAQARASAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙V¬S˙P˙Q˙V