Metamath Proof Explorer


Theorem 4atlem4d

Description: Lemma for 4at . Frequently used associative law. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem4d KHLPAQARASAP˙Q˙R˙S=S˙P˙Q˙R

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simpl1 KHLPAQARASAKHL
5 4 hllatd KHLPAQARASAKLat
6 eqid BaseK=BaseK
7 6 2 3 hlatjcl KHLPAQAP˙QBaseK
8 7 adantr KHLPAQARASAP˙QBaseK
9 6 3 atbase RARBaseK
10 9 ad2antrl KHLPAQARASARBaseK
11 6 3 atbase SASBaseK
12 11 ad2antll KHLPAQARASASBaseK
13 6 2 latjass KLatP˙QBaseKRBaseKSBaseKP˙Q˙R˙S=P˙Q˙R˙S
14 5 8 10 12 13 syl13anc KHLPAQARASAP˙Q˙R˙S=P˙Q˙R˙S
15 6 2 latjcl KLatP˙QBaseKRBaseKP˙Q˙RBaseK
16 5 8 10 15 syl3anc KHLPAQARASAP˙Q˙RBaseK
17 6 2 latjcom KLatP˙Q˙RBaseKSBaseKP˙Q˙R˙S=S˙P˙Q˙R
18 5 16 12 17 syl3anc KHLPAQARASAP˙Q˙R˙S=S˙P˙Q˙R
19 14 18 eqtr3d KHLPAQARASAP˙Q˙R˙S=S˙P˙Q˙R