Description: A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 2-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4cyclusnfrgr.v | |
|
4cyclusnfrgr.e | |
||
Assertion | 4cyclusnfrgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4cyclusnfrgr.v | |
|
2 | 4cyclusnfrgr.e | |
|
3 | simprl | |
|
4 | simprr | |
|
5 | simpl3 | |
|
6 | 4cycl2vnunb | |
|
7 | 3 4 5 6 | syl3anc | |
8 | 1 2 | frcond1 | |
9 | pm2.24 | |
|
10 | 8 9 | syl6com | |
11 | 10 | 3ad2ant2 | |
12 | 11 | com23 | |
13 | 12 | adantr | |
14 | 7 13 | mpd | |
15 | 14 | pm2.01d | |
16 | df-nel | |
|
17 | 15 16 | sylibr | |
18 | 17 | ex | |