Metamath Proof Explorer


Theorem 4cyclusnfrgr

Description: A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypotheses 4cyclusnfrgr.v V=VtxG
4cyclusnfrgr.e E=EdgG
Assertion 4cyclusnfrgr GUSGraphAVCVACBVDVBDABEBCECDEDAEGFriendGraph

Proof

Step Hyp Ref Expression
1 4cyclusnfrgr.v V=VtxG
2 4cyclusnfrgr.e E=EdgG
3 simprl GUSGraphAVCVACBVDVBDABEBCECDEDAEABEBCE
4 simprr GUSGraphAVCVACBVDVBDABEBCECDEDAECDEDAE
5 simpl3 GUSGraphAVCVACBVDVBDABEBCECDEDAEBVDVBD
6 4cycl2vnunb ABEBCECDEDAEBVDVBD¬∃!xVAxxCE
7 3 4 5 6 syl3anc GUSGraphAVCVACBVDVBDABEBCECDEDAE¬∃!xVAxxCE
8 1 2 frcond1 GFriendGraphAVCVAC∃!xVAxxCE
9 pm2.24 ∃!xVAxxCE¬∃!xVAxxCE¬GFriendGraph
10 8 9 syl6com AVCVACGFriendGraph¬∃!xVAxxCE¬GFriendGraph
11 10 3ad2ant2 GUSGraphAVCVACBVDVBDGFriendGraph¬∃!xVAxxCE¬GFriendGraph
12 11 com23 GUSGraphAVCVACBVDVBD¬∃!xVAxxCEGFriendGraph¬GFriendGraph
13 12 adantr GUSGraphAVCVACBVDVBDABEBCECDEDAE¬∃!xVAxxCEGFriendGraph¬GFriendGraph
14 7 13 mpd GUSGraphAVCVACBVDVBDABEBCECDEDAEGFriendGraph¬GFriendGraph
15 14 pm2.01d GUSGraphAVCVACBVDVBDABEBCECDEDAE¬GFriendGraph
16 df-nel GFriendGraph¬GFriendGraph
17 15 16 sylibr GUSGraphAVCVACBVDVBDABEBCECDEDAEGFriendGraph
18 17 ex GUSGraphAVCVACBVDVBDABEBCECDEDAEGFriendGraph