Metamath Proof Explorer


Theorem 4sqlem8

Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)

Ref Expression
Hypotheses 4sqlem5.2 φA
4sqlem5.3 φM
4sqlem5.4 B=A+M2modMM2
Assertion 4sqlem8 φMA2B2

Proof

Step Hyp Ref Expression
1 4sqlem5.2 φA
2 4sqlem5.3 φM
3 4sqlem5.4 B=A+M2modMM2
4 2 nnzd φM
5 1 2 3 4sqlem5 φBABM
6 5 simpld φB
7 1 6 zsubcld φAB
8 zsqcl AA2
9 1 8 syl φA2
10 zsqcl BB2
11 6 10 syl φB2
12 9 11 zsubcld φA2B2
13 5 simprd φABM
14 2 nnne0d φM0
15 dvdsval2 MM0ABMABABM
16 4 14 7 15 syl3anc φMABABM
17 13 16 mpbird φMAB
18 1 6 zaddcld φA+B
19 dvdsmul2 A+BABABA+BAB
20 18 7 19 syl2anc φABA+BAB
21 1 zcnd φA
22 6 zcnd φB
23 subsq ABA2B2=A+BAB
24 21 22 23 syl2anc φA2B2=A+BAB
25 20 24 breqtrrd φABA2B2
26 4 7 12 17 25 dvdstrd φMA2B2