Metamath Proof Explorer


Theorem 5segofs

Description: Rephrase ax5seg using the outer five segment predicate. Theorem 2.10 of Schwabhauser p. 28. (Contributed by Scott Fenton, 21-Sep-2013)

Ref Expression
Assertion 5segofs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H A B C D Cgr G H

Proof

Step Hyp Ref Expression
1 brofs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H
2 1 anbi1d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H A B B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B
3 simpr B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B A B
4 simpl1l B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B B Btwn A C
5 simpl1r B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B F Btwn E G
6 3 4 5 3jca B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B A B B Btwn A C F Btwn E G
7 simpl2 B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B A B Cgr E F B C Cgr F G
8 simpl3 B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B A D Cgr E H B D Cgr F H
9 6 7 8 3jca B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B A B B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H
10 2 9 syl6bi N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H A B A B B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H
11 ax5seg N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H C D Cgr G H
12 10 11 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H A B C D Cgr G H