Metamath Proof Explorer


Theorem 631prm

Description: 631 is a prime number. (Contributed by Mario Carneiro, 1-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 631prm 631

Proof

Step Hyp Ref Expression
1 6nn0 60
2 3nn0 30
3 1 2 deccl 630
4 1nn 1
5 3 4 decnncl 631
6 8nn0 80
7 4nn0 40
8 1nn0 10
9 6lt8 6<8
10 3lt10 3<10
11 1lt10 1<10
12 1 6 2 7 8 8 9 10 11 3decltc 631<841
13 3nn 3
14 1 13 decnncl 63
15 14 8 8 11 declti 1<631
16 0nn0 00
17 2cn 2
18 17 mul02i 02=0
19 1e0p1 1=0+1
20 3 16 18 19 dec2dvds ¬2631
21 2nn0 20
22 21 8 deccl 210
23 22 16 deccl 2100
24 eqid 210=210
25 8 dec0h 1=01
26 eqid 21=21
27 00id 0+0=0
28 16 dec0h 0=00
29 27 28 eqtri 0+0=00
30 3t2e6 32=6
31 30 27 oveq12i 32+0+0=6+0
32 6cn 6
33 32 addridi 6+0=6
34 31 33 eqtri 32+0+0=6
35 3t1e3 31=3
36 35 oveq1i 31+0=3+0
37 3cn 3
38 37 addridi 3+0=3
39 2 dec0h 3=03
40 36 38 39 3eqtri 31+0=03
41 21 8 16 16 26 29 2 2 16 34 40 decma2c 321+0+0=63
42 37 mul01i 30=0
43 42 oveq1i 30+1=0+1
44 0p1e1 0+1=1
45 43 44 25 3eqtri 30+1=01
46 22 16 16 8 24 25 2 8 16 41 45 decma2c 3210+1=631
47 1lt3 1<3
48 13 23 4 46 47 ndvdsi ¬3631
49 1lt5 1<5
50 3 4 49 dec5dvds ¬5631
51 7nn 7
52 9nn0 90
53 52 16 deccl 900
54 eqid 90=90
55 7nn0 70
56 27 oveq2i 79+0+0=79+0
57 9cn 9
58 7cn 7
59 9t7e63 97=63
60 57 58 59 mulcomli 79=63
61 60 oveq1i 79+0=63+0
62 3 nn0cni 63
63 62 addridi 63+0=63
64 56 61 63 3eqtri 79+0+0=63
65 58 mul01i 70=0
66 65 oveq1i 70+1=0+1
67 66 44 25 3eqtri 70+1=01
68 52 16 16 8 54 25 55 8 16 64 67 decma2c 790+1=631
69 1lt7 1<7
70 51 53 4 68 69 ndvdsi ¬7631
71 8 4 decnncl 11
72 5nn0 50
73 72 55 deccl 570
74 4nn 4
75 eqid 57=57
76 7 dec0h 4=04
77 8 8 deccl 110
78 eqid 11=11
79 8cn 8
80 79 addlidi 0+8=8
81 6 dec0h 8=08
82 80 81 eqtri 0+8=08
83 5cn 5
84 83 mullidi 15=5
85 84 44 oveq12i 15+0+1=5+1
86 5p1e6 5+1=6
87 85 86 eqtri 15+0+1=6
88 84 oveq1i 15+8=5+8
89 8p5e13 8+5=13
90 79 83 89 addcomli 5+8=13
91 88 90 eqtri 15+8=13
92 8 8 16 6 78 82 72 2 8 87 91 decmac 115+0+8=63
93 58 mullidi 17=7
94 93 44 oveq12i 17+0+1=7+1
95 7p1e8 7+1=8
96 94 95 eqtri 17+0+1=8
97 93 oveq1i 17+4=7+4
98 7p4e11 7+4=11
99 97 98 eqtri 17+4=11
100 8 8 16 7 78 76 55 8 8 96 99 decmac 117+4=81
101 72 55 16 7 75 76 77 8 6 92 100 decma2c 1157+4=631
102 4lt10 4<10
103 4 8 7 102 declti 4<11
104 71 73 74 101 103 ndvdsi ¬11631
105 8 13 decnncl 13
106 7 6 deccl 480
107 eqid 48=48
108 55 dec0h 7=07
109 8 2 deccl 130
110 eqid 13=13
111 77 nn0cni 11
112 111 addlidi 0+11=11
113 4cn 4
114 113 mullidi 14=4
115 1p1e2 1+1=2
116 114 115 oveq12i 14+1+1=4+2
117 4p2e6 4+2=6
118 116 117 eqtri 14+1+1=6
119 4t3e12 43=12
120 113 37 119 mulcomli 34=12
121 2p1e3 2+1=3
122 8 21 8 120 121 decaddi 34+1=13
123 8 2 8 8 110 112 7 2 8 118 122 decmac 134+0+11=63
124 79 mullidi 18=8
125 37 addlidi 0+3=3
126 124 125 oveq12i 18+0+3=8+3
127 8p3e11 8+3=11
128 126 127 eqtri 18+0+3=11
129 8t3e24 83=24
130 79 37 129 mulcomli 38=24
131 58 113 98 addcomli 4+7=11
132 21 7 55 130 121 8 131 decaddci 38+7=31
133 8 2 16 55 110 108 6 8 2 128 132 decmac 138+7=111
134 7 6 16 55 107 108 109 8 77 123 133 decma2c 1348+7=631
135 7lt10 7<10
136 4 2 55 135 declti 7<13
137 105 106 51 134 136 ndvdsi ¬13631
138 8 51 decnncl 17
139 2 55 deccl 370
140 2nn 2
141 eqid 37=37
142 21 dec0h 2=02
143 8 55 deccl 170
144 8 21 deccl 120
145 eqid 17=17
146 144 nn0cni 12
147 146 addlidi 0+12=12
148 37 mullidi 13=3
149 1p2e3 1+2=3
150 148 149 oveq12i 13+1+2=3+3
151 3p3e6 3+3=6
152 150 151 eqtri 13+1+2=6
153 7t3e21 73=21
154 21 8 21 153 149 decaddi 73+2=23
155 8 55 8 21 145 147 2 2 21 152 154 decmac 173+0+12=63
156 83 addlidi 0+5=5
157 93 156 oveq12i 17+0+5=7+5
158 7p5e12 7+5=12
159 157 158 eqtri 17+0+5=12
160 7t7e49 77=49
161 4p1e5 4+1=5
162 9p2e11 9+2=11
163 7 52 21 160 161 8 162 decaddci 77+2=51
164 8 55 16 21 145 142 55 8 72 159 163 decmac 177+2=121
165 2 55 16 21 141 142 143 8 144 155 164 decma2c 1737+2=631
166 2lt10 2<10
167 4 55 21 166 declti 2<17
168 138 139 140 165 167 ndvdsi ¬17631
169 9nn 9
170 8 169 decnncl 19
171 2 2 deccl 330
172 eqid 33=33
173 8 52 deccl 190
174 eqid 19=19
175 32 addlidi 0+6=6
176 1 dec0h 6=06
177 175 176 eqtri 0+6=06
178 148 125 oveq12i 13+0+3=3+3
179 178 151 eqtri 13+0+3=6
180 9t3e27 93=27
181 7p6e13 7+6=13
182 21 55 1 180 121 2 181 decaddci 93+6=33
183 8 52 16 1 174 177 2 2 2 179 182 decmac 193+0+6=63
184 21 55 7 180 121 8 98 decaddci 93+4=31
185 8 52 16 7 174 76 2 8 2 179 184 decmac 193+4=61
186 2 2 16 7 172 76 173 8 1 183 185 decma2c 1933+4=631
187 4 52 7 102 declti 4<19
188 170 171 74 186 187 ndvdsi ¬19631
189 21 13 decnncl 23
190 21 55 deccl 270
191 10nn 10
192 eqid 27=27
193 eqid 10=10
194 21 2 deccl 230
195 8 1 deccl 160
196 eqid 23=23
197 eqid 16=16
198 ax-1cn 1
199 6p1e7 6+1=7
200 32 198 199 addcomli 1+6=7
201 16 8 8 1 25 197 44 200 decadd 1+16=17
202 2t2e4 22=4
203 202 115 oveq12i 22+1+1=4+2
204 203 117 eqtri 22+1+1=6
205 30 oveq1i 32+7=6+7
206 58 32 181 addcomli 6+7=13
207 205 206 eqtri 32+7=13
208 21 2 8 55 196 201 21 2 8 204 207 decmac 232+1+16=63
209 7t2e14 72=14
210 58 17 209 mulcomli 27=14
211 8 7 21 210 117 decaddi 27+2=16
212 58 37 153 mulcomli 37=21
213 55 21 2 196 8 21 211 212 decmul1c 237=161
214 213 oveq1i 237+0=161+0
215 195 8 deccl 1610
216 215 nn0cni 161
217 216 addridi 161+0=161
218 214 217 eqtri 237+0=161
219 21 55 8 16 192 193 194 8 195 208 218 decma2c 2327+10=631
220 10pos 0<10
221 1lt2 1<2
222 8 21 16 2 220 221 decltc 10<23
223 189 190 191 219 222 ndvdsi ¬23631
224 5 12 15 20 48 50 70 104 137 168 188 223 prmlem2 631