Metamath Proof Explorer


Theorem 83prm

Description: 83 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 83prm 83

Proof

Step Hyp Ref Expression
1 8nn0 80
2 3nn 3
3 1 2 decnncl 83
4 4nn0 40
5 1 4 deccl 840
6 3nn0 30
7 1nn0 10
8 3lt10 3<10
9 8nn 8
10 8lt10 8<10
11 9 4 1 10 declti 8<84
12 1 5 6 7 8 11 decltc 83<841
13 1lt10 1<10
14 9 6 7 13 declti 1<83
15 2cn 2
16 15 mullidi 12=2
17 df-3 3=2+1
18 1 7 16 17 dec2dvds ¬283
19 2nn0 20
20 7nn0 70
21 19 20 deccl 270
22 2nn 2
23 0nn0 00
24 eqid 27=27
25 19 dec0h 2=02
26 3t2e6 32=6
27 15 addlidi 0+2=2
28 26 27 oveq12i 32+0+2=6+2
29 6p2e8 6+2=8
30 28 29 eqtri 32+0+2=8
31 20 nn0cni 7
32 3cn 3
33 7t3e21 73=21
34 31 32 33 mulcomli 37=21
35 1p2e3 1+2=3
36 19 7 19 34 35 decaddi 37+2=23
37 19 20 23 19 24 25 6 6 19 30 36 decma2c 327+2=83
38 2lt3 2<3
39 2 21 22 37 38 ndvdsi ¬383
40 3lt5 3<5
41 1 2 40 dec5dvds ¬583
42 7nn 7
43 7 7 deccl 110
44 6nn 6
45 44 nnnn0i 60
46 eqid 11=11
47 45 dec0h 6=06
48 31 mulridi 71=7
49 ax-1cn 1
50 49 addlidi 0+1=1
51 48 50 oveq12i 71+0+1=7+1
52 7p1e8 7+1=8
53 51 52 eqtri 71+0+1=8
54 48 oveq1i 71+6=7+6
55 7p6e13 7+6=13
56 54 55 eqtri 71+6=13
57 7 7 23 45 46 47 20 6 7 53 56 decma2c 711+6=83
58 6lt7 6<7
59 42 43 44 57 58 ndvdsi ¬783
60 1nn 1
61 7 60 decnncl 11
62 61 nncni 11
63 62 31 mulcomi 117=711
64 63 oveq1i 117+6=711+6
65 64 57 eqtri 117+6=83
66 6lt10 6<10
67 60 7 45 66 declti 6<11
68 61 20 44 65 67 ndvdsi ¬1183
69 7 2 decnncl 13
70 5nn 5
71 70 nnnn0i 50
72 eqid 13=13
73 71 dec0h 5=05
74 6cn 6
75 74 mullidi 16=6
76 75 27 oveq12i 16+0+2=6+2
77 76 29 eqtri 16+0+2=8
78 6t3e18 63=18
79 74 32 78 mulcomli 36=18
80 1p1e2 1+1=2
81 8p5e13 8+5=13
82 7 1 71 79 80 6 81 decaddci 36+5=23
83 7 6 23 71 72 73 45 6 19 77 82 decmac 136+5=83
84 5lt10 5<10
85 60 6 71 84 declti 5<13
86 69 45 70 83 85 ndvdsi ¬1383
87 7 42 decnncl 17
88 7 70 decnncl 15
89 eqid 17=17
90 eqid 15=15
91 4 nn0cni 4
92 91 mullidi 14=4
93 3p1e4 3+1=4
94 32 49 93 addcomli 1+3=4
95 92 94 oveq12i 14+1+3=4+4
96 4p4e8 4+4=8
97 95 96 eqtri 14+1+3=8
98 7t4e28 74=28
99 2p1e3 2+1=3
100 19 1 71 98 99 6 81 decaddci 74+5=33
101 7 20 7 71 89 90 4 6 6 97 100 decmac 174+15=83
102 5lt7 5<7
103 7 71 42 102 declt 15<17
104 87 4 88 101 103 ndvdsi ¬1783
105 9nn 9
106 7 105 decnncl 19
107 9nn0 90
108 eqid 19=19
109 20 dec0h 7=07
110 91 addlidi 0+4=4
111 92 110 oveq12i 14+0+4=4+4
112 111 96 eqtri 14+0+4=8
113 9t4e36 94=36
114 31 74 55 addcomli 6+7=13
115 6 45 20 113 93 6 114 decaddci 94+7=43
116 7 107 23 20 108 109 4 6 4 112 115 decmac 194+7=83
117 7lt10 7<10
118 60 107 20 117 declti 7<19
119 106 4 42 116 118 ndvdsi ¬1983
120 19 2 decnncl 23
121 4nn 4
122 7 121 decnncl 14
123 eqid 23=23
124 eqid 14=14
125 32 15 26 mulcomli 23=6
126 125 80 oveq12i 23+1+1=6+2
127 126 29 eqtri 23+1+1=8
128 3t3e9 33=9
129 128 oveq1i 33+4=9+4
130 9p4e13 9+4=13
131 129 130 eqtri 33+4=13
132 19 6 7 4 123 124 6 6 7 127 131 decmac 233+14=83
133 4lt10 4<10
134 1lt2 1<2
135 7 19 4 6 133 134 decltc 14<23
136 120 6 122 132 135 ndvdsi ¬2383
137 3 12 14 18 39 41 59 68 86 104 119 136 prmlem2 83