Metamath Proof Explorer


Theorem 139prm

Description: 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 139prm 139

Proof

Step Hyp Ref Expression
1 1nn0 10
2 3nn0 30
3 1 2 deccl 130
4 9nn 9
5 3 4 decnncl 139
6 8nn0 80
7 4nn0 40
8 9nn0 90
9 1lt8 1<8
10 3lt10 3<10
11 9lt10 9<10
12 1 6 2 7 8 1 9 10 11 3decltc 139<841
13 3nn 3
14 1 13 decnncl 13
15 1lt10 1<10
16 14 8 1 15 declti 1<139
17 4t2e8 42=8
18 df-9 9=8+1
19 3 7 17 18 dec2dvds ¬2139
20 6nn0 60
21 7 20 deccl 460
22 1nn 1
23 0nn0 00
24 eqid 46=46
25 1 dec0h 1=01
26 ax-1cn 1
27 26 addlidi 0+1=1
28 27 oveq2i 34+0+1=34+1
29 2nn0 20
30 2p1e3 2+1=3
31 7 nn0cni 4
32 3cn 3
33 4t3e12 43=12
34 31 32 33 mulcomli 34=12
35 1 29 30 34 decsuc 34+1=13
36 28 35 eqtri 34+0+1=13
37 8p1e9 8+1=9
38 20 nn0cni 6
39 6t3e18 63=18
40 38 32 39 mulcomli 36=18
41 1 6 37 40 decsuc 36+1=19
42 7 20 23 1 24 25 2 8 1 36 41 decma2c 346+1=139
43 1lt3 1<3
44 13 21 22 42 43 ndvdsi ¬3139
45 4nn 4
46 4lt5 4<5
47 5p4e9 5+4=9
48 3 45 46 47 dec5dvds2 ¬5139
49 7nn 7
50 1 8 deccl 190
51 6nn 6
52 eqid 19=19
53 20 dec0h 6=06
54 7nn0 70
55 7cn 7
56 55 mulridi 71=7
57 38 addlidi 0+6=6
58 56 57 oveq12i 71+0+6=7+6
59 7p6e13 7+6=13
60 58 59 eqtri 71+0+6=13
61 9cn 9
62 9t7e63 97=63
63 61 55 62 mulcomli 79=63
64 6p3e9 6+3=9
65 38 32 64 addcomli 3+6=9
66 20 2 20 63 65 decaddi 79+6=69
67 1 8 23 20 52 53 54 8 20 60 66 decma2c 719+6=139
68 6lt7 6<7
69 49 50 51 67 68 ndvdsi ¬7139
70 1 22 decnncl 11
71 1 29 deccl 120
72 eqid 12=12
73 54 dec0h 7=07
74 1 1 deccl 110
75 2cn 2
76 75 addlidi 0+2=2
77 76 oveq2i 111+0+2=111+2
78 70 nncni 11
79 78 mulridi 111=11
80 1p2e3 1+2=3
81 1 1 29 79 80 decaddi 111+2=13
82 77 81 eqtri 111+0+2=13
83 eqid 11=11
84 75 mullidi 12=2
85 00id 0+0=0
86 84 85 oveq12i 12+0+0=2+0
87 75 addridi 2+0=2
88 86 87 eqtri 12+0+0=2
89 84 oveq1i 12+7=2+7
90 7p2e9 7+2=9
91 55 75 90 addcomli 2+7=9
92 8 dec0h 9=09
93 89 91 92 3eqtri 12+7=09
94 1 1 23 54 83 73 29 8 23 88 93 decmac 112+7=29
95 1 29 23 54 72 73 74 8 29 82 94 decma2c 1112+7=139
96 7lt10 7<10
97 22 1 54 96 declti 7<11
98 70 71 49 95 97 ndvdsi ¬11139
99 10nn0 100
100 eqid 10=10
101 eqid 13=13
102 23 dec0h 0=00
103 85 102 eqtri 0+0=00
104 26 mulridi 11=1
105 104 85 oveq12i 11+0+0=1+0
106 26 addridi 1+0=1
107 105 106 eqtri 11+0+0=1
108 32 mulridi 31=3
109 108 oveq1i 31+0=3+0
110 32 addridi 3+0=3
111 2 dec0h 3=03
112 109 110 111 3eqtri 31+0=03
113 1 2 23 23 101 103 1 2 23 107 112 decmac 131+0+0=13
114 3 nn0cni 13
115 114 mul01i 130=0
116 115 oveq1i 130+9=0+9
117 61 addlidi 0+9=9
118 116 117 92 3eqtri 130+9=09
119 1 23 23 8 100 92 3 8 23 113 118 decma2c 1310+9=139
120 22 2 8 11 declti 9<13
121 14 99 4 119 120 ndvdsi ¬13139
122 1 49 decnncl 17
123 eqid 17=17
124 5nn0 50
125 8cn 8
126 125 mullidi 18=8
127 5cn 5
128 127 addlidi 0+5=5
129 126 128 oveq12i 18+0+5=8+5
130 8p5e13 8+5=13
131 129 130 eqtri 18+0+5=13
132 8t7e56 87=56
133 125 55 132 mulcomli 78=56
134 124 20 2 133 64 decaddi 78+3=59
135 1 54 23 2 123 111 6 8 124 131 134 decmac 178+3=139
136 22 54 2 10 declti 3<17
137 122 6 13 135 136 ndvdsi ¬17139
138 1 4 decnncl 19
139 55 mullidi 17=7
140 139 57 oveq12i 17+0+6=7+6
141 140 59 eqtri 17+0+6=13
142 20 2 20 62 65 decaddi 97+6=69
143 1 8 23 20 52 53 54 8 20 141 142 decmac 197+6=139
144 6lt10 6<10
145 22 8 20 144 declti 6<19
146 138 54 51 143 145 ndvdsi ¬19139
147 29 13 decnncl 23
148 eqid 23=23
149 6t2e12 62=12
150 38 75 149 mulcomli 26=12
151 1 29 30 150 decsuc 26+1=13
152 29 2 1 148 20 8 1 151 41 decrmac 236+1=139
153 2nn 2
154 153 2 1 15 declti 1<23
155 147 20 22 152 154 ndvdsi ¬23139
156 5 12 16 19 44 48 69 98 121 137 146 155 prmlem2 139