Metamath Proof Explorer


Theorem abfmpeld

Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016)

Ref Expression
Hypotheses abfmpeld.1 F=xVy|ψ
abfmpeld.2 φy|ψV
abfmpeld.3 φx=Ay=Bψχ
Assertion abfmpeld φAVBWBFAχ

Proof

Step Hyp Ref Expression
1 abfmpeld.1 F=xVy|ψ
2 abfmpeld.2 φy|ψV
3 abfmpeld.3 φx=Ay=Bψχ
4 2 alrimiv φxy|ψV
5 csbexg xy|ψVA/xy|ψV
6 4 5 syl φA/xy|ψV
7 1 fvmpts AVA/xy|ψVFA=A/xy|ψ
8 6 7 sylan2 AVφFA=A/xy|ψ
9 csbab A/xy|ψ=y|[˙A/x]˙ψ
10 8 9 eqtrdi AVφFA=y|[˙A/x]˙ψ
11 10 eleq2d AVφBFABy|[˙A/x]˙ψ
12 11 adantl BWAVφBFABy|[˙A/x]˙ψ
13 simpll AVφy=BAV
14 3 ancomsd φy=Bx=Aψχ
15 14 adantl AVφy=Bx=Aψχ
16 15 impl AVφy=Bx=Aψχ
17 13 16 sbcied AVφy=B[˙A/x]˙ψχ
18 17 ex AVφy=B[˙A/x]˙ψχ
19 18 alrimiv AVφyy=B[˙A/x]˙ψχ
20 elabgt BWyy=B[˙A/x]˙ψχBy|[˙A/x]˙ψχ
21 19 20 sylan2 BWAVφBy|[˙A/x]˙ψχ
22 12 21 bitrd BWAVφBFAχ
23 22 an13s φAVBWBFAχ
24 23 ex φAVBWBFAχ