Metamath Proof Explorer


Theorem ablodivdiv4

Description: Law for double group division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X=ranG
abldiv.3 D=/gG
Assertion ablodivdiv4 GAbelOpAXBXCXADBDC=ADBGC

Proof

Step Hyp Ref Expression
1 abldiv.1 X=ranG
2 abldiv.3 D=/gG
3 ablogrpo GAbelOpGGrpOp
4 simpl GGrpOpAXBXCXGGrpOp
5 1 2 grpodivcl GGrpOpAXBXADBX
6 5 3adant3r3 GGrpOpAXBXCXADBX
7 simpr3 GGrpOpAXBXCXCX
8 eqid invG=invG
9 1 8 2 grpodivval GGrpOpADBXCXADBDC=ADBGinvGC
10 4 6 7 9 syl3anc GGrpOpAXBXCXADBDC=ADBGinvGC
11 3 10 sylan GAbelOpAXBXCXADBDC=ADBGinvGC
12 simpr1 GAbelOpAXBXCXAX
13 simpr2 GAbelOpAXBXCXBX
14 simp3 AXBXCXCX
15 1 8 grpoinvcl GGrpOpCXinvGCX
16 3 14 15 syl2an GAbelOpAXBXCXinvGCX
17 12 13 16 3jca GAbelOpAXBXCXAXBXinvGCX
18 1 2 ablodivdiv GAbelOpAXBXinvGCXADBDinvGC=ADBGinvGC
19 17 18 syldan GAbelOpAXBXCXADBDinvGC=ADBGinvGC
20 1 8 2 grpodivinv GGrpOpBXCXBDinvGC=BGC
21 3 20 syl3an1 GAbelOpBXCXBDinvGC=BGC
22 21 3adant3r1 GAbelOpAXBXCXBDinvGC=BGC
23 22 oveq2d GAbelOpAXBXCXADBDinvGC=ADBGC
24 11 19 23 3eqtr2d GAbelOpAXBXCXADBDC=ADBGC