Metamath Proof Explorer


Theorem ablonnncan1

Description: Cancellation law for group division. ( nnncan1 analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X=ranG
abldiv.3 D=/gG
Assertion ablonnncan1 GAbelOpAXBXCXADBDADC=CDB

Proof

Step Hyp Ref Expression
1 abldiv.1 X=ranG
2 abldiv.3 D=/gG
3 simpr1 GAbelOpAXBXCXAX
4 simpr2 GAbelOpAXBXCXBX
5 ablogrpo GAbelOpGGrpOp
6 1 2 grpodivcl GGrpOpAXCXADCX
7 5 6 syl3an1 GAbelOpAXCXADCX
8 7 3adant3r2 GAbelOpAXBXCXADCX
9 3 4 8 3jca GAbelOpAXBXCXAXBXADCX
10 1 2 ablodiv32 GAbelOpAXBXADCXADBDADC=ADADCDB
11 9 10 syldan GAbelOpAXBXCXADBDADC=ADADCDB
12 1 2 ablonncan GAbelOpAXCXADADC=C
13 12 3adant3r2 GAbelOpAXBXCXADADC=C
14 13 oveq1d GAbelOpAXBXCXADADCDB=CDB
15 11 14 eqtrd GAbelOpAXBXCXADBDADC=CDB