Metamath Proof Explorer


Theorem ablsimpgfindlem2

Description: Lemma for ablsimpgfind . An element of an abelian finite simple group which squares to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpgfindlem1.1 B = Base G
ablsimpgfindlem1.2 0 ˙ = 0 G
ablsimpgfindlem1.3 · ˙ = G
ablsimpgfindlem1.4 O = od G
ablsimpgfindlem1.5 φ G Abel
ablsimpgfindlem1.6 φ G SimpGrp
Assertion ablsimpgfindlem2 φ x B 2 · ˙ x = 0 ˙ O x 0

Proof

Step Hyp Ref Expression
1 ablsimpgfindlem1.1 B = Base G
2 ablsimpgfindlem1.2 0 ˙ = 0 G
3 ablsimpgfindlem1.3 · ˙ = G
4 ablsimpgfindlem1.4 O = od G
5 ablsimpgfindlem1.5 φ G Abel
6 ablsimpgfindlem1.6 φ G SimpGrp
7 simpr φ x B 2 · ˙ x = 0 ˙ 2 · ˙ x = 0 ˙
8 6 simpggrpd φ G Grp
9 8 adantr φ x B G Grp
10 simpr φ x B x B
11 2z 2
12 11 a1i φ x B 2
13 9 10 12 3jca φ x B G Grp x B 2
14 13 adantr φ x B 2 · ˙ x = 0 ˙ G Grp x B 2
15 1 4 3 2 oddvds G Grp x B 2 O x 2 2 · ˙ x = 0 ˙
16 14 15 syl φ x B 2 · ˙ x = 0 ˙ O x 2 2 · ˙ x = 0 ˙
17 7 16 mpbird φ x B 2 · ˙ x = 0 ˙ O x 2
18 2ne0 2 0
19 18 a1i φ x B 2 · ˙ x = 0 ˙ 2 0
20 19 neneqd φ x B 2 · ˙ x = 0 ˙ ¬ 2 = 0
21 0dvds 2 0 2 2 = 0
22 11 21 ax-mp 0 2 2 = 0
23 20 22 sylnibr φ x B 2 · ˙ x = 0 ˙ ¬ 0 2
24 nbrne2 O x 2 ¬ 0 2 O x 0
25 17 23 24 syl2anc φ x B 2 · ˙ x = 0 ˙ O x 0