Metamath Proof Explorer


Theorem ablsubsub4

Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
ablsubsub.g φGAbel
ablsubsub.x φXB
ablsubsub.y φYB
ablsubsub.z φZB
Assertion ablsubsub4 φX-˙Y-˙Z=X-˙Y+˙Z

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 ablsubsub.g φGAbel
5 ablsubsub.x φXB
6 ablsubsub.y φYB
7 ablsubsub.z φZB
8 ablgrp GAbelGGrp
9 4 8 syl φGGrp
10 1 3 grpsubcl GGrpXBYBX-˙YB
11 9 5 6 10 syl3anc φX-˙YB
12 eqid invgG=invgG
13 1 2 12 3 grpsubval X-˙YBZBX-˙Y-˙Z=X-˙Y+˙invgGZ
14 11 7 13 syl2anc φX-˙Y-˙Z=X-˙Y+˙invgGZ
15 1 12 grpinvcl GGrpZBinvgGZB
16 9 7 15 syl2anc φinvgGZB
17 1 2 3 4 5 6 16 ablsubsub φX-˙Y-˙invgGZ=X-˙Y+˙invgGZ
18 1 2 3 12 9 6 7 grpsubinv φY-˙invgGZ=Y+˙Z
19 18 oveq2d φX-˙Y-˙invgGZ=X-˙Y+˙Z
20 14 17 19 3eqtr2d φX-˙Y-˙Z=X-˙Y+˙Z