Metamath Proof Explorer


Theorem abs2dif

Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion abs2dif ABABAB

Proof

Step Hyp Ref Expression
1 subid1 AA0=A
2 1 fveq2d AA0=A
3 subid1 BB0=B
4 3 fveq2d BB0=B
5 2 4 oveqan12d ABA0B0=AB
6 0cn 0
7 abs3dif A0BA0AB+B0
8 6 7 mp3an2 ABA0AB+B0
9 subcl A0A0
10 6 9 mpan2 AA0
11 abscl A0A0
12 10 11 syl AA0
13 subcl B0B0
14 6 13 mpan2 BB0
15 abscl B0B0
16 14 15 syl BB0
17 12 16 anim12i ABA0B0
18 subcl ABAB
19 abscl ABAB
20 18 19 syl ABAB
21 df-3an A0B0ABA0B0AB
22 17 20 21 sylanbrc ABA0B0AB
23 lesubadd A0B0ABA0B0ABA0AB+B0
24 22 23 syl ABA0B0ABA0AB+B0
25 8 24 mpbird ABA0B0AB
26 5 25 eqbrtrrd ABABAB