Metamath Proof Explorer


Theorem abs3dif

Description: Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006)

Ref Expression
Assertion abs3dif ABCABAC+CB

Proof

Step Hyp Ref Expression
1 npncan ACBAC+C-B=AB
2 1 3com23 ABCAC+C-B=AB
3 2 fveq2d ABCAC+C-B=AB
4 subcl ACAC
5 4 3adant2 ABCAC
6 subcl CBCB
7 6 ancoms BCCB
8 7 3adant1 ABCCB
9 abstri ACCBAC+C-BAC+CB
10 5 8 9 syl2anc ABCAC+C-BAC+CB
11 3 10 eqbrtrrd ABCABAC+CB