Metamath Proof Explorer


Theorem absef

Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007)

Ref Expression
Assertion absef AeA=eA

Proof

Step Hyp Ref Expression
1 replim AA=A+iA
2 1 fveq2d AeA=eA+iA
3 recl AA
4 3 recnd AA
5 ax-icn i
6 imcl AA
7 6 recnd AA
8 mulcl iAiA
9 5 7 8 sylancr AiA
10 efadd AiAeA+iA=eAeiA
11 4 9 10 syl2anc AeA+iA=eAeiA
12 2 11 eqtrd AeA=eAeiA
13 12 fveq2d AeA=eAeiA
14 3 reefcld AeA
15 14 recnd AeA
16 efcl iAeiA
17 9 16 syl AeiA
18 15 17 absmuld AeAeiA=eAeiA
19 absefi AeiA=1
20 6 19 syl AeiA=1
21 20 oveq2d AeAeiA=eA1
22 13 18 21 3eqtrd AeA=eA1
23 15 abscld AeA
24 23 recnd AeA
25 24 mulridd AeA1=eA
26 efgt0 A0<eA
27 3 26 syl A0<eA
28 0re 0
29 ltle 0eA0<eA0eA
30 28 14 29 sylancr A0<eA0eA
31 27 30 mpd A0eA
32 14 31 absidd AeA=eA
33 22 25 32 3eqtrd AeA=eA