Metamath Proof Explorer


Theorem abslem2

Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion abslem2 AA0AAA+AAA=2A

Proof

Step Hyp Ref Expression
1 absvalsq AA2=AA
2 1 adantr AA0A2=AA
3 abscl AA
4 3 adantr AA0A
5 4 recnd AA0A
6 5 sqvald AA0A2=AA
7 2 6 eqtr3d AA0AA=AA
8 7 oveq1d AA0AAA=AAA
9 simpl AA0A
10 9 cjcld AA0A
11 abs00 AA=0A=0
12 11 necon3bid AA0A0
13 12 biimpar AA0A0
14 9 10 5 13 div23d AA0AAA=AAA
15 5 5 13 divcan3d AA0AAA=A
16 8 14 15 3eqtr3d AA0AAA=A
17 16 fveq2d AA0AAA=A
18 9 5 13 divcld AA0AA
19 18 10 cjmuld AA0AAA=AAA
20 9 cjcjd AA0A=A
21 20 oveq2d AA0AAA=AAA
22 19 21 eqtrd AA0AAA=AAA
23 4 cjred AA0A=A
24 17 22 23 3eqtr3d AA0AAA=A
25 24 16 oveq12d AA0AAA+AAA=A+A
26 5 2timesd AA02A=A+A
27 25 26 eqtr4d AA0AAA+AAA=2A