| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
|
| 2 |
|
abvneg.b |
|
| 3 |
|
abvrec.z |
|
| 4 |
|
abvdiv.p |
|
| 5 |
|
simplr |
|
| 6 |
|
simpr1 |
|
| 7 |
|
simpll |
|
| 8 |
|
simpr2 |
|
| 9 |
|
simpr3 |
|
| 10 |
|
eqid |
|
| 11 |
2 3 10
|
drnginvrcl |
|
| 12 |
7 8 9 11
|
syl3anc |
|
| 13 |
|
eqid |
|
| 14 |
1 2 13
|
abvmul |
|
| 15 |
5 6 12 14
|
syl3anc |
|
| 16 |
1 2 3 10
|
abvrec |
|
| 17 |
16
|
3adantr1 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
15 18
|
eqtrd |
|
| 20 |
|
eqid |
|
| 21 |
2 20 3
|
drngunit |
|
| 22 |
7 21
|
syl |
|
| 23 |
8 9 22
|
mpbir2and |
|
| 24 |
2 13 20 10 4
|
dvrval |
|
| 25 |
6 23 24
|
syl2anc |
|
| 26 |
25
|
fveq2d |
|
| 27 |
1 2
|
abvcl |
|
| 28 |
5 6 27
|
syl2anc |
|
| 29 |
28
|
recnd |
|
| 30 |
1 2
|
abvcl |
|
| 31 |
5 8 30
|
syl2anc |
|
| 32 |
31
|
recnd |
|
| 33 |
1 2 3
|
abvne0 |
|
| 34 |
5 8 9 33
|
syl3anc |
|
| 35 |
29 32 34
|
divrecd |
|
| 36 |
19 26 35
|
3eqtr4d |
|