Metamath Proof Explorer


Theorem abvn0b

Description: Another characterization of domains, hinted at in abvtriv : a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypothesis abvn0b.b A=AbsValR
Assertion abvn0b RDomnRNzRingA

Proof

Step Hyp Ref Expression
1 abvn0b.b A=AbsValR
2 domnnzr RDomnRNzRing
3 eqid BaseR=BaseR
4 eqid 0R=0R
5 eqid xBaseRifx=0R01=xBaseRifx=0R01
6 eqid R=R
7 domnring RDomnRRing
8 3 6 4 domnmuln0 RDomnyBaseRy0RzBaseRz0RyRz0R
9 1 3 4 5 6 7 8 abvtrivd RDomnxBaseRifx=0R01A
10 9 ne0d RDomnA
11 2 10 jca RDomnRNzRingA
12 n0 AxxA
13 neanior y0Rz0R¬y=0Rz=0R
14 an4 yBaseRzBaseRy0Rz0RyBaseRy0RzBaseRz0R
15 1 3 4 6 abvdom xAyBaseRy0RzBaseRz0RyRz0R
16 15 3expib xAyBaseRy0RzBaseRz0RyRz0R
17 14 16 biimtrid xAyBaseRzBaseRy0Rz0RyRz0R
18 17 expdimp xAyBaseRzBaseRy0Rz0RyRz0R
19 13 18 biimtrrid xAyBaseRzBaseR¬y=0Rz=0RyRz0R
20 19 necon4bd xAyBaseRzBaseRyRz=0Ry=0Rz=0R
21 20 ralrimivva xAyBaseRzBaseRyRz=0Ry=0Rz=0R
22 21 exlimiv xxAyBaseRzBaseRyRz=0Ry=0Rz=0R
23 12 22 sylbi AyBaseRzBaseRyRz=0Ry=0Rz=0R
24 23 anim2i RNzRingARNzRingyBaseRzBaseRyRz=0Ry=0Rz=0R
25 3 6 4 isdomn RDomnRNzRingyBaseRzBaseRyRz=0Ry=0Rz=0R
26 24 25 sylibr RNzRingARDomn
27 11 26 impbii RDomnRNzRingA