Description: Another characterization of domains, hinted at in abvtriv : a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abvn0b.b | |
|
Assertion | abvn0b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvn0b.b | |
|
2 | domnnzr | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | domnring | |
|
8 | 3 6 4 | domnmuln0 | |
9 | 1 3 4 5 6 7 8 | abvtrivd | |
10 | 9 | ne0d | |
11 | 2 10 | jca | |
12 | n0 | |
|
13 | neanior | |
|
14 | an4 | |
|
15 | 1 3 4 6 | abvdom | |
16 | 15 | 3expib | |
17 | 14 16 | biimtrid | |
18 | 17 | expdimp | |
19 | 13 18 | biimtrrid | |
20 | 19 | necon4bd | |
21 | 20 | ralrimivva | |
22 | 21 | exlimiv | |
23 | 12 22 | sylbi | |
24 | 23 | anim2i | |
25 | 3 6 4 | isdomn | |
26 | 24 25 | sylibr | |
27 | 11 26 | impbii | |