Metamath Proof Explorer


Theorem abvtriv

Description: The trivial absolute value. (This theorem is true as long as R is a domain, but it is not true for rings with zero divisors, which violate the multiplication axiom; abvdom is the converse of this remark.) (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses abvtriv.a A=AbsValR
abvtriv.b B=BaseR
abvtriv.z 0˙=0R
abvtriv.f F=xBifx=0˙01
Assertion abvtriv RDivRingFA

Proof

Step Hyp Ref Expression
1 abvtriv.a A=AbsValR
2 abvtriv.b B=BaseR
3 abvtriv.z 0˙=0R
4 abvtriv.f F=xBifx=0˙01
5 eqid R=R
6 drngring RDivRingRRing
7 biid RDivRingRDivRing
8 eldifsn yB0˙yBy0˙
9 eldifsn zB0˙zBz0˙
10 2 5 3 drngmcl RDivRingyB0˙zB0˙yRzB0˙
11 7 8 9 10 syl3anbr RDivRingyBy0˙zBz0˙yRzB0˙
12 eldifsn yRzB0˙yRzByRz0˙
13 11 12 sylib RDivRingyBy0˙zBz0˙yRzByRz0˙
14 13 simprd RDivRingyBy0˙zBz0˙yRz0˙
15 1 2 3 4 5 6 14 abvtrivd RDivRingFA