Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ackbij.f | |
|
Assertion | ackbij1lem15 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | |
|
2 | simpr1 | |
|
3 | ackbij1lem3 | |
|
4 | 2 3 | syl | |
5 | simpr3 | |
|
6 | ackbij1lem1 | |
|
7 | 5 6 | syl | |
8 | inss2 | |
|
9 | 7 8 | eqsstrdi | |
10 | 1 | ackbij1lem12 | |
11 | 4 9 10 | syl2anc | |
12 | 1 | ackbij1lem10 | |
13 | 12 | ffvelcdmi | |
14 | nnon | |
|
15 | onpsssuc | |
|
16 | 4 13 14 15 | 4syl | |
17 | 1 | ackbij1lem14 | |
18 | 2 17 | syl | |
19 | 18 | psseq2d | |
20 | 16 19 | mpbird | |
21 | simpll | |
|
22 | inss1 | |
|
23 | 1 | ackbij1lem11 | |
24 | 21 22 23 | sylancl | |
25 | ssun1 | |
|
26 | simpr2 | |
|
27 | ackbij1lem2 | |
|
28 | 26 27 | syl | |
29 | 25 28 | sseqtrrid | |
30 | 1 | ackbij1lem12 | |
31 | 24 29 30 | syl2anc | |
32 | 20 31 | psssstrd | |
33 | 11 32 | sspsstrd | |
34 | 33 | pssned | |
35 | 34 | necomd | |
36 | 35 | neneqd | |