Metamath Proof Explorer


Theorem ackval2012

Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024)

Ref Expression
Assertion ackval2012 Could not format assertion : No typesetting found for |- <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. with typecode |-

Proof

Step Hyp Ref Expression
1 ackval2 Could not format ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) : No typesetting found for |- ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) with typecode |-
2 oveq2 n=02n=20
3 2 oveq1d n=02n+3=20+3
4 2t0e0 20=0
5 4 oveq1i 20+3=0+3
6 3cn 3
7 6 addlidi 0+3=3
8 5 7 eqtri 20+3=3
9 3 8 eqtrdi n=02n+3=3
10 0nn0 00
11 10 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 0 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 0 e. NN0 ) with typecode |-
12 3nn0 30
13 12 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 3 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 3 e. NN0 ) with typecode |-
14 1 9 11 13 fvmptd3 Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 0 ) = 3 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 0 ) = 3 ) with typecode |-
15 oveq2 n=12n=21
16 15 oveq1d n=12n+3=21+3
17 2t1e2 21=2
18 17 oveq1i 21+3=2+3
19 2cn 2
20 3p2e5 3+2=5
21 6 19 20 addcomli 2+3=5
22 18 21 eqtri 21+3=5
23 16 22 eqtrdi n=12n+3=5
24 1nn0 10
25 24 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 1 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 1 e. NN0 ) with typecode |-
26 5nn0 50
27 26 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 5 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 5 e. NN0 ) with typecode |-
28 1 23 25 27 fvmptd3 Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 1 ) = 5 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 1 ) = 5 ) with typecode |-
29 oveq2 n=22n=22
30 29 oveq1d n=22n+3=22+3
31 2t2e4 22=4
32 31 oveq1i 22+3=4+3
33 4p3e7 4+3=7
34 32 33 eqtri 22+3=7
35 30 34 eqtrdi n=22n+3=7
36 2nn0 20
37 36 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 2 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 2 e. NN0 ) with typecode |-
38 7nn0 70
39 38 a1i Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 7 e. NN0 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 7 e. NN0 ) with typecode |-
40 1 35 37 39 fvmptd3 Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 2 ) = 7 ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 2 ) = 7 ) with typecode |-
41 14 28 40 oteq123d Could not format ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. ) : No typesetting found for |- ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. ) with typecode |-
42 1 41 ax-mp Could not format <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. : No typesetting found for |- <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. with typecode |-