Metamath Proof Explorer


Theorem ackval41a

Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024)

Ref Expression
Assertion ackval41a Could not format assertion : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-4 4=3+1
2 1 fveq2i Could not format ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) : No typesetting found for |- ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) with typecode |-
3 1e0p1 1=0+1
4 2 3 fveq12i Could not format ( ( Ack ` 4 ) ` 1 ) = ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) with typecode |-
5 3nn0 30
6 0nn0 00
7 ackvalsucsucval Could not format ( ( 3 e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) ) : No typesetting found for |- ( ( 3 e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) ) with typecode |-
8 5 6 7 mp2an Could not format ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) with typecode |-
9 3p1e4 3+1=4
10 9 fveq2i Could not format ( Ack ` ( 3 + 1 ) ) = ( Ack ` 4 ) : No typesetting found for |- ( Ack ` ( 3 + 1 ) ) = ( Ack ` 4 ) with typecode |-
11 10 fveq1i Could not format ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 4 ) ` 0 ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 4 ) ` 0 ) with typecode |-
12 ackval40 Could not format ( ( Ack ` 4 ) ` 0 ) = ; 1 3 : No typesetting found for |- ( ( Ack ` 4 ) ` 0 ) = ; 1 3 with typecode |-
13 11 12 eqtri Could not format ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ; 1 3 : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ; 1 3 with typecode |-
14 13 fveq2i Could not format ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( Ack ` 3 ) ` ; 1 3 ) : No typesetting found for |- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( Ack ` 3 ) ` ; 1 3 ) with typecode |-
15 1nn0 10
16 15 5 deccl 130
17 oveq1 n=13n+3=13+3
18 17 oveq2d n=132n+3=213+3
19 18 oveq1d n=132n+33=213+33
20 eqid 13=13
21 3p3e6 3+3=6
22 15 5 5 20 21 decaddi 13+3=16
23 22 oveq2i 213+3=216
24 23 oveq1i 213+33=2163
25 19 24 eqtrdi n=132n+33=2163
26 ackval3 Could not format ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) : No typesetting found for |- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-
27 ovex 2163V
28 25 26 27 fvmpt Could not format ( ; 1 3 e. NN0 -> ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) ) : No typesetting found for |- ( ; 1 3 e. NN0 -> ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) ) with typecode |-
29 16 28 ax-mp Could not format ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-
30 14 29 eqtri Could not format ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-
31 8 30 eqtri Could not format ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-
32 4 31 eqtri Could not format ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-