Metamath Proof Explorer


Theorem addcncff

Description: The sum of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses addcncff.f φF:Xcn
addcncff.g φG:Xcn
Assertion addcncff φF+fG:Xcn

Proof

Step Hyp Ref Expression
1 addcncff.f φF:Xcn
2 addcncff.g φG:Xcn
3 cncfrss F:XcnX
4 cnex V
5 4 ssex XXV
6 1 3 5 3syl φXV
7 cncff F:XcnF:X
8 1 7 syl φF:X
9 8 ffvelcdmda φxXFx
10 cncff G:XcnG:X
11 2 10 syl φG:X
12 11 ffvelcdmda φxXGx
13 8 feqmptd φF=xXFx
14 11 feqmptd φG=xXGx
15 6 9 12 13 14 offval2 φF+fG=xXFx+Gx
16 13 1 eqeltrrd φxXFx:Xcn
17 14 2 eqeltrrd φxXGx:Xcn
18 16 17 addcncf φxXFx+Gx:Xcn
19 15 18 eqeltrd φF+fG:Xcn