Metamath Proof Explorer


Theorem addcos

Description: Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion addcos ABcosA+cosB=2cosA+B2cosAB2

Proof

Step Hyp Ref Expression
1 coscl AcosA
2 coscl BcosB
3 addcom cosAcosBcosA+cosB=cosB+cosA
4 1 2 3 syl2an ABcosA+cosB=cosB+cosA
5 halfaddsub ABA+B2+AB2=AA+B2AB2=B
6 5 simprd ABA+B2AB2=B
7 6 fveq2d ABcosA+B2AB2=cosB
8 5 simpld ABA+B2+AB2=A
9 8 fveq2d ABcosA+B2+AB2=cosA
10 7 9 oveq12d ABcosA+B2AB2+cosA+B2+AB2=cosB+cosA
11 halfaddsubcl ABA+B2AB2
12 coscl A+B2cosA+B2
13 coscl AB2cosAB2
14 mulcl cosA+B2cosAB2cosA+B2cosAB2
15 12 13 14 syl2an A+B2AB2cosA+B2cosAB2
16 11 15 syl ABcosA+B2cosAB2
17 sincl A+B2sinA+B2
18 sincl AB2sinAB2
19 mulcl sinA+B2sinAB2sinA+B2sinAB2
20 17 18 19 syl2an A+B2AB2sinA+B2sinAB2
21 11 20 syl ABsinA+B2sinAB2
22 16 21 16 ppncand ABcosA+B2cosAB2+sinA+B2sinAB2+cosA+B2cosAB2sinA+B2sinAB2=cosA+B2cosAB2+cosA+B2cosAB2
23 cossub A+B2AB2cosA+B2AB2=cosA+B2cosAB2+sinA+B2sinAB2
24 cosadd A+B2AB2cosA+B2+AB2=cosA+B2cosAB2sinA+B2sinAB2
25 23 24 oveq12d A+B2AB2cosA+B2AB2+cosA+B2+AB2=cosA+B2cosAB2+sinA+B2sinAB2+cosA+B2cosAB2sinA+B2sinAB2
26 11 25 syl ABcosA+B2AB2+cosA+B2+AB2=cosA+B2cosAB2+sinA+B2sinAB2+cosA+B2cosAB2sinA+B2sinAB2
27 16 2timesd AB2cosA+B2cosAB2=cosA+B2cosAB2+cosA+B2cosAB2
28 22 26 27 3eqtr4d ABcosA+B2AB2+cosA+B2+AB2=2cosA+B2cosAB2
29 4 10 28 3eqtr2d ABcosA+cosB=2cosA+B2cosAB2