Metamath Proof Explorer


Theorem addpqf

Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion addpqf +𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵

Proof

Step Hyp Ref Expression
1 xp1st x𝑵×𝑵1stx𝑵
2 xp2nd y𝑵×𝑵2ndy𝑵
3 mulclpi 1stx𝑵2ndy𝑵1stx𝑵2ndy𝑵
4 1 2 3 syl2an x𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy𝑵
5 xp1st y𝑵×𝑵1sty𝑵
6 xp2nd x𝑵×𝑵2ndx𝑵
7 mulclpi 1sty𝑵2ndx𝑵1sty𝑵2ndx𝑵
8 5 6 7 syl2anr x𝑵×𝑵y𝑵×𝑵1sty𝑵2ndx𝑵
9 addclpi 1stx𝑵2ndy𝑵1sty𝑵2ndx𝑵1stx𝑵2ndy+𝑵1sty𝑵2ndx𝑵
10 4 8 9 syl2anc x𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy+𝑵1sty𝑵2ndx𝑵
11 mulclpi 2ndx𝑵2ndy𝑵2ndx𝑵2ndy𝑵
12 6 2 11 syl2an x𝑵×𝑵y𝑵×𝑵2ndx𝑵2ndy𝑵
13 10 12 opelxpd x𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy+𝑵1sty𝑵2ndx2ndx𝑵2ndy𝑵×𝑵
14 13 rgen2 x𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy+𝑵1sty𝑵2ndx2ndx𝑵2ndy𝑵×𝑵
15 df-plpq +𝑝𝑸=x𝑵×𝑵,y𝑵×𝑵1stx𝑵2ndy+𝑵1sty𝑵2ndx2ndx𝑵2ndy
16 15 fmpo x𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy+𝑵1sty𝑵2ndx2ndx𝑵2ndy𝑵×𝑵+𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵
17 14 16 mpbi +𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵