Metamath Proof Explorer


Theorem addsub

Description: Law for addition and subtraction. (Contributed by NM, 19-Aug-2001) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion addsub ABCA+B-C=A-C+B

Proof

Step Hyp Ref Expression
1 addcom ABA+B=B+A
2 1 oveq1d ABA+B-C=B+A-C
3 2 3adant3 ABCA+B-C=B+A-C
4 addsubass BACB+A-C=B+A-C
5 4 3com12 ABCB+A-C=B+A-C
6 subcl ACAC
7 addcom BACB+A-C=A-C+B
8 6 7 sylan2 BACB+A-C=A-C+B
9 8 3impb BACB+A-C=A-C+B
10 9 3com12 ABCB+A-C=A-C+B
11 3 5 10 3eqtrd ABCA+B-C=A-C+B