Metamath Proof Explorer


Theorem afv2eq12d

Description: Equality deduction for function value, analogous to fveq12d . (Contributed by AV, 4-Sep-2022)

Ref Expression
Hypotheses afv2eq12d.1 φ F = G
afv2eq12d.2 φ A = B
Assertion afv2eq12d φ F '''' A = G '''' B

Proof

Step Hyp Ref Expression
1 afv2eq12d.1 φ F = G
2 afv2eq12d.2 φ A = B
3 1 2 dfateq12d φ F defAt A G defAt B
4 eqidd φ x = x
5 2 1 4 breq123d φ A F x B G x
6 5 iotabidv φ ι x | A F x = ι x | B G x
7 1 rneqd φ ran F = ran G
8 7 unieqd φ ran F = ran G
9 8 pweqd φ 𝒫 ran F = 𝒫 ran G
10 3 6 9 ifbieq12d φ if F defAt A ι x | A F x 𝒫 ran F = if G defAt B ι x | B G x 𝒫 ran G
11 df-afv2 F '''' A = if F defAt A ι x | A F x 𝒫 ran F
12 df-afv2 G '''' B = if G defAt B ι x | B G x 𝒫 ran G
13 10 11 12 3eqtr4g φ F '''' A = G '''' B