Metamath Proof Explorer


Theorem afv2eq12d

Description: Equality deduction for function value, analogous to fveq12d . (Contributed by AV, 4-Sep-2022)

Ref Expression
Hypotheses afv2eq12d.1 φF=G
afv2eq12d.2 φA=B
Assertion afv2eq12d φF''''A=G''''B

Proof

Step Hyp Ref Expression
1 afv2eq12d.1 φF=G
2 afv2eq12d.2 φA=B
3 1 2 dfateq12d φFdefAtAGdefAtB
4 eqidd φx=x
5 2 1 4 breq123d φAFxBGx
6 5 iotabidv φιx|AFx=ιx|BGx
7 1 rneqd φranF=ranG
8 7 unieqd φranF=ranG
9 8 pweqd φ𝒫ranF=𝒫ranG
10 3 6 9 ifbieq12d φifFdefAtAιx|AFx𝒫ranF=ifGdefAtBιx|BGx𝒫ranG
11 df-afv2 F''''A=ifFdefAtAιx|AFx𝒫ranF
12 df-afv2 G''''B=ifGdefAtBιx|BGx𝒫ranG
13 10 11 12 3eqtr4g φF''''A=G''''B