Metamath Proof Explorer


Theorem afv2fvn0fveq

Description: If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2fvn0fveq FAF''''A=FA

Proof

Step Hyp Ref Expression
1 fvfundmfvn0 FAAdomFFunFA
2 df-dfat FdefAtAAdomFFunFA
3 1 2 sylibr FAFdefAtA
4 dfatafv2eqfv FdefAtAF''''A=FA
5 3 4 syl FAF''''A=FA