Metamath Proof Explorer


Theorem alephgeom

Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003)

Ref Expression
Assertion alephgeom A On ω A

Proof

Step Hyp Ref Expression
1 aleph0 = ω
2 0ss A
3 0elon On
4 alephord3 On A On A A
5 3 4 mpan A On A A
6 2 5 mpbii A On A
7 1 6 eqsstrrid A On ω A
8 peano1 ω
9 ordom Ord ω
10 ord0 Ord
11 ordtri1 Ord ω Ord ω ¬ ω
12 9 10 11 mp2an ω ¬ ω
13 12 con2bii ω ¬ ω
14 8 13 mpbi ¬ ω
15 ndmfv ¬ A dom A =
16 15 sseq2d ¬ A dom ω A ω
17 14 16 mtbiri ¬ A dom ¬ ω A
18 17 con4i ω A A dom
19 alephfnon Fn On
20 fndm Fn On dom = On
21 19 20 ax-mp dom = On
22 18 21 eleqtrdi ω A A On
23 7 22 impbii A On ω A