Metamath Proof Explorer


Theorem algr0

Description: The value of the algorithm iterator R at 0 is the initial state A . (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses algrf.1 Z=M
algrf.2 R=seqMF1stZ×A
algrf.3 φM
algrf.4 φAS
Assertion algr0 φRM=A

Proof

Step Hyp Ref Expression
1 algrf.1 Z=M
2 algrf.2 R=seqMF1stZ×A
3 algrf.3 φM
4 algrf.4 φAS
5 2 fveq1i RM=seqMF1stZ×AM
6 seq1 MseqMF1stZ×AM=Z×AM
7 3 6 syl φseqMF1stZ×AM=Z×AM
8 uzid MMM
9 3 8 syl φMM
10 9 1 eleqtrrdi φMZ
11 fvconst2g ASMZZ×AM=A
12 4 10 11 syl2anc φZ×AM=A
13 7 12 eqtrd φseqMF1stZ×AM=A
14 5 13 eqtrid φRM=A