| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
|
| 2 |
|
eqidd |
|
| 3 |
|
eqeq1 |
|
| 4 |
|
eqeq2 |
|
| 5 |
|
eumo |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
moel |
|
| 8 |
6 7
|
sylib |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
9 10
|
homarw |
|
| 12 |
|
eqid |
|
| 13 |
|
euex |
|
| 14 |
9
|
arwrcl |
|
| 15 |
14
|
exlimiv |
|
| 16 |
13 15
|
syl |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
|
eqid |
|
| 19 |
|
simplrl |
|
| 20 |
|
simplrr |
|
| 21 |
|
simprl |
|
| 22 |
10 12 17 18 19 20 21
|
elhomai2 |
|
| 23 |
11 22
|
sselid |
|
| 24 |
|
simprr |
|
| 25 |
10 12 17 18 19 20 24
|
elhomai2 |
|
| 26 |
11 25
|
sselid |
|
| 27 |
3 4 8 23 26
|
rspc2dv |
|
| 28 |
|
vex |
|
| 29 |
|
vex |
|
| 30 |
|
vex |
|
| 31 |
28 29 30
|
otth |
|
| 32 |
31
|
simp3bi |
|
| 33 |
27 32
|
syl |
|
| 34 |
33
|
ralrimivva |
|
| 35 |
|
moel |
|
| 36 |
34 35
|
sylibr |
|
| 37 |
1 2 36 16
|
isthincd |
|