Metamath Proof Explorer


Theorem asclfval

Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Hypotheses asclfval.a A=algScW
asclfval.f F=ScalarW
asclfval.k K=BaseF
asclfval.s ·˙=W
asclfval.o 1˙=1W
Assertion asclfval A=xKx·˙1˙

Proof

Step Hyp Ref Expression
1 asclfval.a A=algScW
2 asclfval.f F=ScalarW
3 asclfval.k K=BaseF
4 asclfval.s ·˙=W
5 asclfval.o 1˙=1W
6 fveq2 w=WScalarw=ScalarW
7 6 2 eqtr4di w=WScalarw=F
8 7 fveq2d w=WBaseScalarw=BaseF
9 8 3 eqtr4di w=WBaseScalarw=K
10 fveq2 w=Ww=W
11 10 4 eqtr4di w=Ww=·˙
12 eqidd w=Wx=x
13 fveq2 w=W1w=1W
14 13 5 eqtr4di w=W1w=1˙
15 11 12 14 oveq123d w=Wxw1w=x·˙1˙
16 9 15 mpteq12dv w=WxBaseScalarwxw1w=xKx·˙1˙
17 df-ascl algSc=wVxBaseScalarwxw1w
18 16 17 3 mptfvmpt WValgScW=xKx·˙1˙
19 fvprc ¬WValgScW=
20 mpt0 xx·˙1˙=
21 19 20 eqtr4di ¬WValgScW=xx·˙1˙
22 fvprc ¬WVScalarW=
23 2 22 eqtrid ¬WVF=
24 23 fveq2d ¬WVBaseF=Base
25 base0 =Base
26 24 25 eqtr4di ¬WVBaseF=
27 3 26 eqtrid ¬WVK=
28 27 mpteq1d ¬WVxKx·˙1˙=xx·˙1˙
29 21 28 eqtr4d ¬WValgScW=xKx·˙1˙
30 18 29 pm2.61i algScW=xKx·˙1˙
31 1 30 eqtri A=xKx·˙1˙