Metamath Proof Explorer


Theorem atanf

Description: Domain and codoamin of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atanf arctan:ii

Proof

Step Hyp Ref Expression
1 df-atan arctan=xiii2log1ixlog1+ix
2 ovex i2log1ixlog1+ixV
3 2 1 dmmpti domarctan=ii
4 3 eleq2i xdomarctanxii
5 ax-icn i
6 halfcl ii2
7 5 6 ax-mp i2
8 ax-1cn 1
9 atandm2 xdomarctanx1ix01+ix0
10 9 simp1bi xdomarctanx
11 mulcl ixix
12 5 10 11 sylancr xdomarctanix
13 subcl 1ix1ix
14 8 12 13 sylancr xdomarctan1ix
15 9 simp2bi xdomarctan1ix0
16 14 15 logcld xdomarctanlog1ix
17 addcl 1ix1+ix
18 8 12 17 sylancr xdomarctan1+ix
19 9 simp3bi xdomarctan1+ix0
20 18 19 logcld xdomarctanlog1+ix
21 16 20 subcld xdomarctanlog1ixlog1+ix
22 mulcl i2log1ixlog1+ixi2log1ixlog1+ix
23 7 21 22 sylancr xdomarctani2log1ixlog1+ix
24 4 23 sylbir xiii2log1ixlog1+ix
25 1 24 fmpti arctan:ii