Metamath Proof Explorer


Theorem atlen0

Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses atlen0.b B=BaseK
atlen0.l ˙=K
atlen0.z 0˙=0.K
atlen0.a A=AtomsK
Assertion atlen0 KAtLatXBPAP˙XX0˙

Proof

Step Hyp Ref Expression
1 atlen0.b B=BaseK
2 atlen0.l ˙=K
3 atlen0.z 0˙=0.K
4 atlen0.a A=AtomsK
5 simpl1 KAtLatXBPAP˙XKAtLat
6 1 3 atl0cl KAtLat0˙B
7 5 6 syl KAtLatXBPAP˙X0˙B
8 simpl2 KAtLatXBPAP˙XXB
9 5 7 8 3jca KAtLatXBPAP˙XKAtLat0˙BXB
10 simpl3 KAtLatXBPAP˙XPA
11 1 4 atbase PAPB
12 10 11 syl KAtLatXBPAP˙XPB
13 eqid K=K
14 3 13 4 atcvr0 KAtLatPA0˙KP
15 5 10 14 syl2anc KAtLatXBPAP˙X0˙KP
16 eqid <K=<K
17 1 16 13 cvrlt KAtLat0˙BPB0˙KP0˙<KP
18 5 7 12 15 17 syl31anc KAtLatXBPAP˙X0˙<KP
19 simpr KAtLatXBPAP˙XP˙X
20 atlpos KAtLatKPoset
21 5 20 syl KAtLatXBPAP˙XKPoset
22 1 2 16 pltletr KPoset0˙BPBXB0˙<KPP˙X0˙<KX
23 21 7 12 8 22 syl13anc KAtLatXBPAP˙X0˙<KPP˙X0˙<KX
24 18 19 23 mp2and KAtLatXBPAP˙X0˙<KX
25 16 pltne KAtLat0˙BXB0˙<KX0˙X
26 9 24 25 sylc KAtLatXBPAP˙X0˙X
27 26 necomd KAtLatXBPAP˙XX0˙