Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020) (Revised by AV, 25-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ausgr.1 | |
|
Assertion | ausgrumgri | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ausgr.1 | |
|
2 | fvex | |
|
3 | fvex | |
|
4 | 1 | isausgr | |
5 | 2 3 4 | mp2an | |
6 | edgval | |
|
7 | 6 | a1i | |
8 | 7 | sseq1d | |
9 | funfn | |
|
10 | 9 | biimpi | |
11 | 10 | 3ad2ant3 | |
12 | simp2 | |
|
13 | df-f | |
|
14 | 11 12 13 | sylanbrc | |
15 | 14 | 3exp | |
16 | 8 15 | sylbid | |
17 | 5 16 | biimtrid | |
18 | 17 | 3imp | |
19 | eqid | |
|
20 | eqid | |
|
21 | 19 20 | isumgrs | |
22 | 21 | 3ad2ant1 | |
23 | 18 22 | mpbird | |