Metamath Proof Explorer


Theorem ausgrumgri

Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypothesis ausgr.1 G=ve|ex𝒫v|x=2
Assertion ausgrumgri HWVtxHGEdgHFuniEdgHHUMGraph

Proof

Step Hyp Ref Expression
1 ausgr.1 G=ve|ex𝒫v|x=2
2 fvex VtxHV
3 fvex EdgHV
4 1 isausgr VtxHVEdgHVVtxHGEdgHEdgHx𝒫VtxH|x=2
5 2 3 4 mp2an VtxHGEdgHEdgHx𝒫VtxH|x=2
6 edgval EdgH=raniEdgH
7 6 a1i HWEdgH=raniEdgH
8 7 sseq1d HWEdgHx𝒫VtxH|x=2raniEdgHx𝒫VtxH|x=2
9 funfn FuniEdgHiEdgHFndomiEdgH
10 9 biimpi FuniEdgHiEdgHFndomiEdgH
11 10 3ad2ant3 HWraniEdgHx𝒫VtxH|x=2FuniEdgHiEdgHFndomiEdgH
12 simp2 HWraniEdgHx𝒫VtxH|x=2FuniEdgHraniEdgHx𝒫VtxH|x=2
13 df-f iEdgH:domiEdgHx𝒫VtxH|x=2iEdgHFndomiEdgHraniEdgHx𝒫VtxH|x=2
14 11 12 13 sylanbrc HWraniEdgHx𝒫VtxH|x=2FuniEdgHiEdgH:domiEdgHx𝒫VtxH|x=2
15 14 3exp HWraniEdgHx𝒫VtxH|x=2FuniEdgHiEdgH:domiEdgHx𝒫VtxH|x=2
16 8 15 sylbid HWEdgHx𝒫VtxH|x=2FuniEdgHiEdgH:domiEdgHx𝒫VtxH|x=2
17 5 16 biimtrid HWVtxHGEdgHFuniEdgHiEdgH:domiEdgHx𝒫VtxH|x=2
18 17 3imp HWVtxHGEdgHFuniEdgHiEdgH:domiEdgHx𝒫VtxH|x=2
19 eqid VtxH=VtxH
20 eqid iEdgH=iEdgH
21 19 20 isumgrs HWHUMGraphiEdgH:domiEdgHx𝒫VtxH|x=2
22 21 3ad2ant1 HWVtxHGEdgHFuniEdgHHUMGraphiEdgH:domiEdgHx𝒫VtxH|x=2
23 18 22 mpbird HWVtxHGEdgHFuniEdgHHUMGraph