Metamath Proof Explorer


Theorem ax12el

Description: Basis step for constructing a substitution instance of ax-c15 without using ax-c15 . Atomic formula for membership predicate. (Contributed by NM, 22-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax12el ¬xx=yx=yzwxx=yzw

Proof

Step Hyp Ref Expression
1 19.26 xx=zx=wxx=zxx=w
2 elequ1 x=yxxyx
3 elequ2 x=yyxyy
4 2 3 bitrd x=yxxyy
5 4 adantl ¬xx=yx=yxxyy
6 ax-5 vvxvv
7 ax-5 yyvyy
8 elequ1 v=yvvyv
9 elequ2 v=yyvyy
10 8 9 bitrd v=yvvyy
11 6 7 10 dvelimf-o ¬xx=yyyxyy
12 4 biimprcd yyx=yxx
13 12 alimi xyyxx=yxx
14 11 13 syl6 ¬xx=yyyxx=yxx
15 14 adantr ¬xx=yx=yyyxx=yxx
16 5 15 sylbid ¬xx=yx=yxxxx=yxx
17 16 adantl xx=zx=w¬xx=yx=yxxxx=yxx
18 elequ1 x=zxxzx
19 elequ2 x=wzxzw
20 18 19 sylan9bb x=zx=wxxzw
21 20 sps-o xx=zx=wxxzw
22 nfa1-o xxx=zx=w
23 21 imbi2d xx=zx=wx=yxxx=yzw
24 22 23 albid xx=zx=wxx=yxxxx=yzw
25 21 24 imbi12d xx=zx=wxxxx=yxxzwxx=yzw
26 25 adantr xx=zx=w¬xx=yx=yxxxx=yxxzwxx=yzw
27 17 26 mpbid xx=zx=w¬xx=yx=yzwxx=yzw
28 27 exp32 xx=zx=w¬xx=yx=yzwxx=yzw
29 1 28 sylbir xx=zxx=w¬xx=yx=yzwxx=yzw
30 elequ1 x=yxwyw
31 30 ad2antll ¬xx=w¬xx=yx=yxwyw
32 ax-c14 ¬xx=y¬xx=wywxyw
33 32 impcom ¬xx=w¬xx=yywxyw
34 33 adantrr ¬xx=w¬xx=yx=yywxyw
35 30 biimprcd ywx=yxw
36 35 alimi xywxx=yxw
37 34 36 syl6 ¬xx=w¬xx=yx=yywxx=yxw
38 31 37 sylbid ¬xx=w¬xx=yx=yxwxx=yxw
39 38 adantll xx=z¬xx=w¬xx=yx=yxwxx=yxw
40 elequ1 x=zxwzw
41 40 sps-o xx=zxwzw
42 41 imbi2d xx=zx=yxwx=yzw
43 42 dral2-o xx=zxx=yxwxx=yzw
44 41 43 imbi12d xx=zxwxx=yxwzwxx=yzw
45 44 ad2antrr xx=z¬xx=w¬xx=yx=yxwxx=yxwzwxx=yzw
46 39 45 mpbid xx=z¬xx=w¬xx=yx=yzwxx=yzw
47 46 exp32 xx=z¬xx=w¬xx=yx=yzwxx=yzw
48 elequ2 x=yzxzy
49 48 ad2antll ¬xx=z¬xx=yx=yzxzy
50 ax-c14 ¬xx=z¬xx=yzyxzy
51 50 imp ¬xx=z¬xx=yzyxzy
52 51 adantrr ¬xx=z¬xx=yx=yzyxzy
53 48 biimprcd zyx=yzx
54 53 alimi xzyxx=yzx
55 52 54 syl6 ¬xx=z¬xx=yx=yzyxx=yzx
56 49 55 sylbid ¬xx=z¬xx=yx=yzxxx=yzx
57 56 adantlr ¬xx=zxx=w¬xx=yx=yzxxx=yzx
58 19 sps-o xx=wzxzw
59 58 imbi2d xx=wx=yzxx=yzw
60 59 dral2-o xx=wxx=yzxxx=yzw
61 58 60 imbi12d xx=wzxxx=yzxzwxx=yzw
62 61 ad2antlr ¬xx=zxx=w¬xx=yx=yzxxx=yzxzwxx=yzw
63 57 62 mpbid ¬xx=zxx=w¬xx=yx=yzwxx=yzw
64 63 exp32 ¬xx=zxx=w¬xx=yx=yzwxx=yzw
65 ax6ev uu=w
66 ax6ev vv=z
67 ax-1 vux=yvu
68 67 alrimiv vuxx=yvu
69 elequ1 v=zvuzu
70 elequ2 u=wzuzw
71 69 70 sylan9bb v=zu=wvuzw
72 71 adantl ¬xx=z¬xx=wv=zu=wvuzw
73 dveeq2-o ¬xx=zv=zxv=z
74 dveeq2-o ¬xx=wu=wxu=w
75 73 74 im2anan9 ¬xx=z¬xx=wv=zu=wxv=zxu=w
76 75 imp ¬xx=z¬xx=wv=zu=wxv=zxu=w
77 19.26 xv=zu=wxv=zxu=w
78 76 77 sylibr ¬xx=z¬xx=wv=zu=wxv=zu=w
79 nfa1-o xxv=zu=w
80 71 sps-o xv=zu=wvuzw
81 80 imbi2d xv=zu=wx=yvux=yzw
82 79 81 albid xv=zu=wxx=yvuxx=yzw
83 78 82 syl ¬xx=z¬xx=wv=zu=wxx=yvuxx=yzw
84 72 83 imbi12d ¬xx=z¬xx=wv=zu=wvuxx=yvuzwxx=yzw
85 68 84 mpbii ¬xx=z¬xx=wv=zu=wzwxx=yzw
86 85 exp32 ¬xx=z¬xx=wv=zu=wzwxx=yzw
87 86 exlimdv ¬xx=z¬xx=wvv=zu=wzwxx=yzw
88 66 87 mpi ¬xx=z¬xx=wu=wzwxx=yzw
89 88 exlimdv ¬xx=z¬xx=wuu=wzwxx=yzw
90 65 89 mpi ¬xx=z¬xx=wzwxx=yzw
91 90 a1d ¬xx=z¬xx=wx=yzwxx=yzw
92 91 a1d ¬xx=z¬xx=w¬xx=yx=yzwxx=yzw
93 29 47 64 92 4cases ¬xx=yx=yzwxx=yzw