Metamath Proof Explorer


Theorem ax12eq

Description: Basis step for constructing a substitution instance of ax-c15 without using ax-c15 . Atomic formula for equality predicate. (Contributed by NM, 22-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax12eq ¬xx=yx=yz=wxx=yz=w

Proof

Step Hyp Ref Expression
1 19.26 xx=zx=wxx=zxx=w
2 equid x=x
3 2 a1i x=yx=x
4 3 ax-gen xx=yx=x
5 4 a1i x=xxx=yx=x
6 equequ1 x=zx=xz=x
7 equequ2 x=wz=xz=w
8 6 7 sylan9bb x=zx=wx=xz=w
9 8 sps-o xx=zx=wx=xz=w
10 nfa1-o xxx=zx=w
11 9 imbi2d xx=zx=wx=yx=xx=yz=w
12 10 11 albid xx=zx=wxx=yx=xxx=yz=w
13 9 12 imbi12d xx=zx=wx=xxx=yx=xz=wxx=yz=w
14 13 adantr xx=zx=w¬xx=yx=yx=xxx=yx=xz=wxx=yz=w
15 5 14 mpbii xx=zx=w¬xx=yx=yz=wxx=yz=w
16 15 exp32 xx=zx=w¬xx=yx=yz=wxx=yz=w
17 1 16 sylbir xx=zxx=w¬xx=yx=yz=wxx=yz=w
18 equequ1 x=yx=wy=w
19 18 ad2antll ¬xx=w¬xx=yx=yx=wy=w
20 axc9 ¬xx=y¬xx=wy=wxy=w
21 20 impcom ¬xx=w¬xx=yy=wxy=w
22 21 adantrr ¬xx=w¬xx=yx=yy=wxy=w
23 equtrr y=wx=yx=w
24 23 alimi xy=wxx=yx=w
25 22 24 syl6 ¬xx=w¬xx=yx=yy=wxx=yx=w
26 19 25 sylbid ¬xx=w¬xx=yx=yx=wxx=yx=w
27 26 adantll xx=z¬xx=w¬xx=yx=yx=wxx=yx=w
28 equequ1 x=zx=wz=w
29 28 sps-o xx=zx=wz=w
30 29 imbi2d xx=zx=yx=wx=yz=w
31 30 dral2-o xx=zxx=yx=wxx=yz=w
32 29 31 imbi12d xx=zx=wxx=yx=wz=wxx=yz=w
33 32 ad2antrr xx=z¬xx=w¬xx=yx=yx=wxx=yx=wz=wxx=yz=w
34 27 33 mpbid xx=z¬xx=w¬xx=yx=yz=wxx=yz=w
35 34 exp32 xx=z¬xx=w¬xx=yx=yz=wxx=yz=w
36 equequ2 x=yz=xz=y
37 36 ad2antll ¬xx=z¬xx=yx=yz=xz=y
38 axc9 ¬xx=z¬xx=yz=yxz=y
39 38 imp ¬xx=z¬xx=yz=yxz=y
40 39 adantrr ¬xx=z¬xx=yx=yz=yxz=y
41 36 biimprcd z=yx=yz=x
42 41 alimi xz=yxx=yz=x
43 40 42 syl6 ¬xx=z¬xx=yx=yz=yxx=yz=x
44 37 43 sylbid ¬xx=z¬xx=yx=yz=xxx=yz=x
45 44 adantlr ¬xx=zxx=w¬xx=yx=yz=xxx=yz=x
46 7 sps-o xx=wz=xz=w
47 46 imbi2d xx=wx=yz=xx=yz=w
48 47 dral2-o xx=wxx=yz=xxx=yz=w
49 46 48 imbi12d xx=wz=xxx=yz=xz=wxx=yz=w
50 49 ad2antlr ¬xx=zxx=w¬xx=yx=yz=xxx=yz=xz=wxx=yz=w
51 45 50 mpbid ¬xx=zxx=w¬xx=yx=yz=wxx=yz=w
52 51 exp32 ¬xx=zxx=w¬xx=yx=yz=wxx=yz=w
53 ax6ev uu=w
54 ax6ev vv=z
55 ax-1 v=ux=yv=u
56 55 alrimiv v=uxx=yv=u
57 equequ1 v=zv=uz=u
58 equequ2 u=wz=uz=w
59 57 58 sylan9bb v=zu=wv=uz=w
60 59 adantl ¬xx=z¬xx=wv=zu=wv=uz=w
61 dveeq2-o ¬xx=zv=zxv=z
62 dveeq2-o ¬xx=wu=wxu=w
63 61 62 im2anan9 ¬xx=z¬xx=wv=zu=wxv=zxu=w
64 63 imp ¬xx=z¬xx=wv=zu=wxv=zxu=w
65 19.26 xv=zu=wxv=zxu=w
66 64 65 sylibr ¬xx=z¬xx=wv=zu=wxv=zu=w
67 nfa1-o xxv=zu=w
68 59 sps-o xv=zu=wv=uz=w
69 68 imbi2d xv=zu=wx=yv=ux=yz=w
70 67 69 albid xv=zu=wxx=yv=uxx=yz=w
71 66 70 syl ¬xx=z¬xx=wv=zu=wxx=yv=uxx=yz=w
72 60 71 imbi12d ¬xx=z¬xx=wv=zu=wv=uxx=yv=uz=wxx=yz=w
73 56 72 mpbii ¬xx=z¬xx=wv=zu=wz=wxx=yz=w
74 73 exp32 ¬xx=z¬xx=wv=zu=wz=wxx=yz=w
75 74 exlimdv ¬xx=z¬xx=wvv=zu=wz=wxx=yz=w
76 54 75 mpi ¬xx=z¬xx=wu=wz=wxx=yz=w
77 76 exlimdv ¬xx=z¬xx=wuu=wz=wxx=yz=w
78 53 77 mpi ¬xx=z¬xx=wz=wxx=yz=w
79 78 a1d ¬xx=z¬xx=wx=yz=wxx=yz=w
80 79 a1d ¬xx=z¬xx=w¬xx=yx=yz=wxx=yz=w
81 17 35 52 80 4cases ¬xx=yx=yz=wxx=yz=w