Metamath Proof Explorer


Theorem ax12indalem

Description: Lemma for ax12inda2 and ax12inda . (Contributed by NM, 24-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12indalem.1 ¬xx=yx=yφxx=yφ
Assertion ax12indalem ¬yy=z¬xx=yx=yzφxx=yzφ

Proof

Step Hyp Ref Expression
1 ax12indalem.1 ¬xx=yx=yφxx=yφ
2 ax-1 xφx=yxφ
3 2 axc4i-o xφxx=yxφ
4 3 a1i zz=xxφxx=yxφ
5 biidd zz=xφφ
6 5 dral1-o zz=xzφxφ
7 6 imbi2d zz=xx=yzφx=yxφ
8 7 dral2-o zz=xxx=yzφxx=yxφ
9 4 6 8 3imtr4d zz=xzφxx=yzφ
10 9 aecoms-o xx=zzφxx=yzφ
11 10 a1d xx=zx=yzφxx=yzφ
12 11 a1d xx=z¬xx=yx=yzφxx=yzφ
13 12 adantr xx=z¬yy=z¬xx=yx=yzφxx=yzφ
14 simplr ¬xx=z¬yy=z¬xx=yx=y¬xx=y
15 aecom-o zz=xxx=z
16 15 con3i ¬xx=z¬zz=x
17 aecom-o zz=yyy=z
18 17 con3i ¬yy=z¬zz=y
19 axc9 ¬zz=x¬zz=yx=yzx=y
20 19 imp ¬zz=x¬zz=yx=yzx=y
21 16 18 20 syl2an ¬xx=z¬yy=zx=yzx=y
22 21 imp ¬xx=z¬yy=zx=yzx=y
23 22 adantlr ¬xx=z¬yy=z¬xx=yx=yzx=y
24 hbnae-o ¬xx=yz¬xx=y
25 hba1-o zx=yzzx=y
26 24 25 hban ¬xx=yzx=yz¬xx=yzx=y
27 ax-c5 zx=yx=y
28 1 imp ¬xx=yx=yφxx=yφ
29 27 28 sylan2 ¬xx=yzx=yφxx=yφ
30 26 29 alimdh ¬xx=yzx=yzφzxx=yφ
31 14 23 30 syl2anc ¬xx=z¬yy=z¬xx=yx=yzφzxx=yφ
32 ax-11 zxx=yφxzx=yφ
33 hbnae-o ¬xx=zx¬xx=z
34 hbnae-o ¬yy=zx¬yy=z
35 33 34 hban ¬xx=z¬yy=zx¬xx=z¬yy=z
36 hbnae-o ¬xx=zz¬xx=z
37 hbnae-o ¬yy=zz¬yy=z
38 36 37 hban ¬xx=z¬yy=zz¬xx=z¬yy=z
39 38 21 nf5dh ¬xx=z¬yy=zzx=y
40 19.21t zx=yzx=yφx=yzφ
41 39 40 syl ¬xx=z¬yy=zzx=yφx=yzφ
42 35 41 albidh ¬xx=z¬yy=zxzx=yφxx=yzφ
43 32 42 imbitrid ¬xx=z¬yy=zzxx=yφxx=yzφ
44 43 ad2antrr ¬xx=z¬yy=z¬xx=yx=yzxx=yφxx=yzφ
45 31 44 syld ¬xx=z¬yy=z¬xx=yx=yzφxx=yzφ
46 45 exp31 ¬xx=z¬yy=z¬xx=yx=yzφxx=yzφ
47 13 46 pm2.61ian ¬yy=z¬xx=yx=yzφxx=yzφ