Metamath Proof Explorer


Theorem ax1rid

Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulrid , based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid . (Contributed by Scott Fenton, 3-Jan-2013) (New usage is discouraged.)

Ref Expression
Assertion ax1rid AA1=A

Proof

Step Hyp Ref Expression
1 df-r =𝑹×0𝑹
2 oveq1 xy=Axy1=A1
3 id xy=Axy=A
4 2 3 eqeq12d xy=Axy1=xyA1=A
5 elsni y0𝑹y=0𝑹
6 df-1 1=1𝑹0𝑹
7 6 oveq2i x0𝑹1=x0𝑹1𝑹0𝑹
8 1sr 1𝑹𝑹
9 mulresr x𝑹1𝑹𝑹x0𝑹1𝑹0𝑹=x𝑹1𝑹0𝑹
10 8 9 mpan2 x𝑹x0𝑹1𝑹0𝑹=x𝑹1𝑹0𝑹
11 1idsr x𝑹x𝑹1𝑹=x
12 11 opeq1d x𝑹x𝑹1𝑹0𝑹=x0𝑹
13 10 12 eqtrd x𝑹x0𝑹1𝑹0𝑹=x0𝑹
14 7 13 eqtrid x𝑹x0𝑹1=x0𝑹
15 opeq2 y=0𝑹xy=x0𝑹
16 15 oveq1d y=0𝑹xy1=x0𝑹1
17 16 15 eqeq12d y=0𝑹xy1=xyx0𝑹1=x0𝑹
18 14 17 imbitrrid y=0𝑹x𝑹xy1=xy
19 18 impcom x𝑹y=0𝑹xy1=xy
20 5 19 sylan2 x𝑹y0𝑹xy1=xy
21 1 4 20 optocl AA1=A