Metamath Proof Explorer


Theorem axcc4dom

Description: Relax the constraint on axcc4 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014)

Ref Expression
Hypotheses axcc4dom.1 AV
axcc4dom.2 x=fnφψ
Assertion axcc4dom NωnNxAφff:NAnNψ

Proof

Step Hyp Ref Expression
1 axcc4dom.1 AV
2 axcc4dom.2 x=fnφψ
3 brdom2 NωNωNω
4 isfinite NFinNω
5 2 ac6sfi NFinnNxAφff:NAnNψ
6 5 ex NFinnNxAφff:NAnNψ
7 4 6 sylbir NωnNxAφff:NAnNψ
8 raleq N=ifNωNωnNxAφnifNωNωxAφ
9 feq2 N=ifNωNωf:NAf:ifNωNωA
10 raleq N=ifNωNωnNψnifNωNωψ
11 9 10 anbi12d N=ifNωNωf:NAnNψf:ifNωNωAnifNωNωψ
12 11 exbidv N=ifNωNωff:NAnNψff:ifNωNωAnifNωNωψ
13 8 12 imbi12d N=ifNωNωnNxAφff:NAnNψnifNωNωxAφff:ifNωNωAnifNωNωψ
14 breq1 N=ifNωNωNωifNωNωω
15 breq1 ω=ifNωNωωωifNωNωω
16 omex ωV
17 16 enref ωω
18 14 15 17 elimhyp ifNωNωω
19 1 18 2 axcc4 nifNωNωxAφff:ifNωNωAnifNωNωψ
20 13 19 dedth NωnNxAφff:NAnNψ
21 7 20 jaoi NωNωnNxAφff:NAnNψ
22 3 21 sylbi NωnNxAφff:NAnNψ
23 22 imp NωnNxAφff:NAnNψ