Metamath Proof Explorer


Theorem axlowdimlem4

Description: Lemma for axlowdim . Set up a particular constant function. (Contributed by Scott Fenton, 17-Apr-2013)

Ref Expression
Hypotheses axlowdimlem4.1 A
axlowdimlem4.2 B
Assertion axlowdimlem4 1A2B:12

Proof

Step Hyp Ref Expression
1 axlowdimlem4.1 A
2 axlowdimlem4.2 B
3 1ne2 12
4 1ex 1V
5 2ex 2V
6 1 elexi AV
7 2 elexi BV
8 4 5 6 7 fpr 121A2B:12AB
9 3 8 ax-mp 1A2B:12AB
10 fz12pr 12=12
11 10 feq2i 1A2B:12AB1A2B:12AB
12 9 11 mpbir 1A2B:12AB
13 1 2 pm3.2i AB
14 6 7 prss ABAB
15 13 14 mpbi AB
16 fss 1A2B:12ABAB1A2B:12
17 12 15 16 mp2an 1A2B:12