Metamath Proof Explorer


Theorem ballotlemgun

Description: A property of the defined .^ operator. (Contributed by Thierry Arnoux, 26-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
ballotlemg × ˙ = u Fin , v Fin v u v u
ballotlemgun.1 φ U Fin
ballotlemgun.2 φ V Fin
ballotlemgun.3 φ W Fin
ballotlemgun.4 φ V W =
Assertion ballotlemgun φ U × ˙ V W = U × ˙ V + U × ˙ W

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 ballotlemg × ˙ = u Fin , v Fin v u v u
12 ballotlemgun.1 φ U Fin
13 ballotlemgun.2 φ V Fin
14 ballotlemgun.3 φ W Fin
15 ballotlemgun.4 φ V W =
16 indir V W U = V U W U
17 16 fveq2i V W U = V U W U
18 infi V Fin V U Fin
19 13 18 syl φ V U Fin
20 infi W Fin W U Fin
21 14 20 syl φ W U Fin
22 15 ineq1d φ V W U = U
23 inindir V W U = V U W U
24 0in U =
25 22 23 24 3eqtr3g φ V U W U =
26 hashun V U Fin W U Fin V U W U = V U W U = V U + W U
27 19 21 25 26 syl3anc φ V U W U = V U + W U
28 17 27 eqtrid φ V W U = V U + W U
29 difundir V W U = V U W U
30 29 fveq2i V W U = V U W U
31 diffi V Fin V U Fin
32 13 31 syl φ V U Fin
33 diffi W Fin W U Fin
34 14 33 syl φ W U Fin
35 15 difeq1d φ V W U = U
36 difindir V W U = V U W U
37 0dif U =
38 35 36 37 3eqtr3g φ V U W U =
39 hashun V U Fin W U Fin V U W U = V U W U = V U + W U
40 32 34 38 39 syl3anc φ V U W U = V U + W U
41 30 40 eqtrid φ V W U = V U + W U
42 28 41 oveq12d φ V W U V W U = V U + W U - V U + W U
43 hashcl V U Fin V U 0
44 13 18 43 3syl φ V U 0
45 44 nn0cnd φ V U
46 hashcl W U Fin W U 0
47 14 20 46 3syl φ W U 0
48 47 nn0cnd φ W U
49 hashcl V U Fin V U 0
50 13 31 49 3syl φ V U 0
51 50 nn0cnd φ V U
52 hashcl W U Fin W U 0
53 14 33 52 3syl φ W U 0
54 53 nn0cnd φ W U
55 45 48 51 54 addsub4d φ V U + W U - V U + W U = V U V U + W U - W U
56 42 55 eqtrd φ V W U V W U = V U V U + W U - W U
57 unfi V Fin W Fin V W Fin
58 13 14 57 syl2anc φ V W Fin
59 1 2 3 4 5 6 7 8 9 10 11 ballotlemgval U Fin V W Fin U × ˙ V W = V W U V W U
60 12 58 59 syl2anc φ U × ˙ V W = V W U V W U
61 1 2 3 4 5 6 7 8 9 10 11 ballotlemgval U Fin V Fin U × ˙ V = V U V U
62 12 13 61 syl2anc φ U × ˙ V = V U V U
63 1 2 3 4 5 6 7 8 9 10 11 ballotlemgval U Fin W Fin U × ˙ W = W U W U
64 12 14 63 syl2anc φ U × ˙ W = W U W U
65 62 64 oveq12d φ U × ˙ V + U × ˙ W = V U V U + W U - W U
66 56 60 65 3eqtr4d φ U × ˙ V W = U × ˙ V + U × ˙ W