| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ballotth.m | ⊢ 𝑀  ∈  ℕ | 
						
							| 2 |  | ballotth.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | ballotth.o | ⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 } | 
						
							| 4 |  | ballotth.p | ⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) ) | 
						
							| 5 |  | ballotth.f | ⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) ) | 
						
							| 6 |  | ballotth.e | ⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } | 
						
							| 7 |  | ballotth.mgtn | ⊢ 𝑁  <  𝑀 | 
						
							| 8 |  | ballotth.i | ⊢ 𝐼  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) ) | 
						
							| 9 |  | ballotth.s | ⊢ 𝑆  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 ) ,  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) | 
						
							| 10 |  | ballotth.r | ⊢ 𝑅  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( ( 𝑆 ‘ 𝑐 )  “  𝑐 ) ) | 
						
							| 11 |  | ballotlemg | ⊢  ↑   =  ( 𝑢  ∈  Fin ,  𝑣  ∈  Fin  ↦  ( ( ♯ ‘ ( 𝑣  ∩  𝑢 ) )  −  ( ♯ ‘ ( 𝑣  ∖  𝑢 ) ) ) ) | 
						
							| 12 |  | ballotlemgun.1 | ⊢ ( 𝜑  →  𝑈  ∈  Fin ) | 
						
							| 13 |  | ballotlemgun.2 | ⊢ ( 𝜑  →  𝑉  ∈  Fin ) | 
						
							| 14 |  | ballotlemgun.3 | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 15 |  | ballotlemgun.4 | ⊢ ( 𝜑  →  ( 𝑉  ∩  𝑊 )  =  ∅ ) | 
						
							| 16 |  | indir | ⊢ ( ( 𝑉  ∪  𝑊 )  ∩  𝑈 )  =  ( ( 𝑉  ∩  𝑈 )  ∪  ( 𝑊  ∩  𝑈 ) ) | 
						
							| 17 | 16 | fveq2i | ⊢ ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∩  𝑈 ) )  =  ( ♯ ‘ ( ( 𝑉  ∩  𝑈 )  ∪  ( 𝑊  ∩  𝑈 ) ) ) | 
						
							| 18 |  | infi | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ∩  𝑈 )  ∈  Fin ) | 
						
							| 19 | 13 18 | syl | ⊢ ( 𝜑  →  ( 𝑉  ∩  𝑈 )  ∈  Fin ) | 
						
							| 20 |  | infi | ⊢ ( 𝑊  ∈  Fin  →  ( 𝑊  ∩  𝑈 )  ∈  Fin ) | 
						
							| 21 | 14 20 | syl | ⊢ ( 𝜑  →  ( 𝑊  ∩  𝑈 )  ∈  Fin ) | 
						
							| 22 | 15 | ineq1d | ⊢ ( 𝜑  →  ( ( 𝑉  ∩  𝑊 )  ∩  𝑈 )  =  ( ∅  ∩  𝑈 ) ) | 
						
							| 23 |  | inindir | ⊢ ( ( 𝑉  ∩  𝑊 )  ∩  𝑈 )  =  ( ( 𝑉  ∩  𝑈 )  ∩  ( 𝑊  ∩  𝑈 ) ) | 
						
							| 24 |  | 0in | ⊢ ( ∅  ∩  𝑈 )  =  ∅ | 
						
							| 25 | 22 23 24 | 3eqtr3g | ⊢ ( 𝜑  →  ( ( 𝑉  ∩  𝑈 )  ∩  ( 𝑊  ∩  𝑈 ) )  =  ∅ ) | 
						
							| 26 |  | hashun | ⊢ ( ( ( 𝑉  ∩  𝑈 )  ∈  Fin  ∧  ( 𝑊  ∩  𝑈 )  ∈  Fin  ∧  ( ( 𝑉  ∩  𝑈 )  ∩  ( 𝑊  ∩  𝑈 ) )  =  ∅ )  →  ( ♯ ‘ ( ( 𝑉  ∩  𝑈 )  ∪  ( 𝑊  ∩  𝑈 ) ) )  =  ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∩  𝑈 ) ) ) ) | 
						
							| 27 | 19 21 25 26 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑉  ∩  𝑈 )  ∪  ( 𝑊  ∩  𝑈 ) ) )  =  ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∩  𝑈 ) ) ) ) | 
						
							| 28 | 17 27 | eqtrid | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∩  𝑈 ) )  =  ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∩  𝑈 ) ) ) ) | 
						
							| 29 |  | difundir | ⊢ ( ( 𝑉  ∪  𝑊 )  ∖  𝑈 )  =  ( ( 𝑉  ∖  𝑈 )  ∪  ( 𝑊  ∖  𝑈 ) ) | 
						
							| 30 | 29 | fveq2i | ⊢ ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∖  𝑈 ) )  =  ( ♯ ‘ ( ( 𝑉  ∖  𝑈 )  ∪  ( 𝑊  ∖  𝑈 ) ) ) | 
						
							| 31 |  | diffi | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ∖  𝑈 )  ∈  Fin ) | 
						
							| 32 | 13 31 | syl | ⊢ ( 𝜑  →  ( 𝑉  ∖  𝑈 )  ∈  Fin ) | 
						
							| 33 |  | diffi | ⊢ ( 𝑊  ∈  Fin  →  ( 𝑊  ∖  𝑈 )  ∈  Fin ) | 
						
							| 34 | 14 33 | syl | ⊢ ( 𝜑  →  ( 𝑊  ∖  𝑈 )  ∈  Fin ) | 
						
							| 35 | 15 | difeq1d | ⊢ ( 𝜑  →  ( ( 𝑉  ∩  𝑊 )  ∖  𝑈 )  =  ( ∅  ∖  𝑈 ) ) | 
						
							| 36 |  | difindir | ⊢ ( ( 𝑉  ∩  𝑊 )  ∖  𝑈 )  =  ( ( 𝑉  ∖  𝑈 )  ∩  ( 𝑊  ∖  𝑈 ) ) | 
						
							| 37 |  | 0dif | ⊢ ( ∅  ∖  𝑈 )  =  ∅ | 
						
							| 38 | 35 36 37 | 3eqtr3g | ⊢ ( 𝜑  →  ( ( 𝑉  ∖  𝑈 )  ∩  ( 𝑊  ∖  𝑈 ) )  =  ∅ ) | 
						
							| 39 |  | hashun | ⊢ ( ( ( 𝑉  ∖  𝑈 )  ∈  Fin  ∧  ( 𝑊  ∖  𝑈 )  ∈  Fin  ∧  ( ( 𝑉  ∖  𝑈 )  ∩  ( 𝑊  ∖  𝑈 ) )  =  ∅ )  →  ( ♯ ‘ ( ( 𝑉  ∖  𝑈 )  ∪  ( 𝑊  ∖  𝑈 ) ) )  =  ( ( ♯ ‘ ( 𝑉  ∖  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) ) | 
						
							| 40 | 32 34 38 39 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑉  ∖  𝑈 )  ∪  ( 𝑊  ∖  𝑈 ) ) )  =  ( ( ♯ ‘ ( 𝑉  ∖  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) ) | 
						
							| 41 | 30 40 | eqtrid | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∖  𝑈 ) )  =  ( ( ♯ ‘ ( 𝑉  ∖  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) ) | 
						
							| 42 | 28 41 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∩  𝑈 ) )  −  ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∖  𝑈 ) ) )  =  ( ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∩  𝑈 ) ) )  −  ( ( ♯ ‘ ( 𝑉  ∖  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) ) ) | 
						
							| 43 |  | hashcl | ⊢ ( ( 𝑉  ∩  𝑈 )  ∈  Fin  →  ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 44 | 13 18 43 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 45 | 44 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  ∈  ℂ ) | 
						
							| 46 |  | hashcl | ⊢ ( ( 𝑊  ∩  𝑈 )  ∈  Fin  →  ( ♯ ‘ ( 𝑊  ∩  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 47 | 14 20 46 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  ∩  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 48 | 47 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  ∩  𝑈 ) )  ∈  ℂ ) | 
						
							| 49 |  | hashcl | ⊢ ( ( 𝑉  ∖  𝑈 )  ∈  Fin  →  ( ♯ ‘ ( 𝑉  ∖  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 50 | 13 31 49 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑉  ∖  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 51 | 50 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑉  ∖  𝑈 ) )  ∈  ℂ ) | 
						
							| 52 |  | hashcl | ⊢ ( ( 𝑊  ∖  𝑈 )  ∈  Fin  →  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 53 | 14 33 52 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 54 | 53 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) )  ∈  ℂ ) | 
						
							| 55 | 45 48 51 54 | addsub4d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∩  𝑈 ) ) )  −  ( ( ♯ ‘ ( 𝑉  ∖  𝑈 ) )  +  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) )  =  ( ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑉  ∖  𝑈 ) ) )  +  ( ( ♯ ‘ ( 𝑊  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) ) ) | 
						
							| 56 | 42 55 | eqtrd | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∩  𝑈 ) )  −  ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∖  𝑈 ) ) )  =  ( ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑉  ∖  𝑈 ) ) )  +  ( ( ♯ ‘ ( 𝑊  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) ) ) | 
						
							| 57 |  | unfi | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑊  ∈  Fin )  →  ( 𝑉  ∪  𝑊 )  ∈  Fin ) | 
						
							| 58 | 13 14 57 | syl2anc | ⊢ ( 𝜑  →  ( 𝑉  ∪  𝑊 )  ∈  Fin ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 10 11 | ballotlemgval | ⊢ ( ( 𝑈  ∈  Fin  ∧  ( 𝑉  ∪  𝑊 )  ∈  Fin )  →  ( 𝑈  ↑  ( 𝑉  ∪  𝑊 ) )  =  ( ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∩  𝑈 ) )  −  ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∖  𝑈 ) ) ) ) | 
						
							| 60 | 12 58 59 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈  ↑  ( 𝑉  ∪  𝑊 ) )  =  ( ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∩  𝑈 ) )  −  ( ♯ ‘ ( ( 𝑉  ∪  𝑊 )  ∖  𝑈 ) ) ) ) | 
						
							| 61 | 1 2 3 4 5 6 7 8 9 10 11 | ballotlemgval | ⊢ ( ( 𝑈  ∈  Fin  ∧  𝑉  ∈  Fin )  →  ( 𝑈  ↑  𝑉 )  =  ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑉  ∖  𝑈 ) ) ) ) | 
						
							| 62 | 12 13 61 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈  ↑  𝑉 )  =  ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑉  ∖  𝑈 ) ) ) ) | 
						
							| 63 | 1 2 3 4 5 6 7 8 9 10 11 | ballotlemgval | ⊢ ( ( 𝑈  ∈  Fin  ∧  𝑊  ∈  Fin )  →  ( 𝑈  ↑  𝑊 )  =  ( ( ♯ ‘ ( 𝑊  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) ) | 
						
							| 64 | 12 14 63 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈  ↑  𝑊 )  =  ( ( ♯ ‘ ( 𝑊  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) ) | 
						
							| 65 | 62 64 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑈  ↑  𝑉 )  +  ( 𝑈  ↑  𝑊 ) )  =  ( ( ( ♯ ‘ ( 𝑉  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑉  ∖  𝑈 ) ) )  +  ( ( ♯ ‘ ( 𝑊  ∩  𝑈 ) )  −  ( ♯ ‘ ( 𝑊  ∖  𝑈 ) ) ) ) ) | 
						
							| 66 | 56 60 65 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑈  ↑  ( 𝑉  ∪  𝑊 ) )  =  ( ( 𝑈  ↑  𝑉 )  +  ( 𝑈  ↑  𝑊 ) ) ) |