Metamath Proof Explorer


Theorem ballotlemgun

Description: A property of the defined .^ operator. (Contributed by Thierry Arnoux, 26-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
ballotlemg ×˙=uFin,vFinvuvu
ballotlemgun.1 φUFin
ballotlemgun.2 φVFin
ballotlemgun.3 φWFin
ballotlemgun.4 φVW=
Assertion ballotlemgun φU×˙VW=U×˙V+U×˙W

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 ballotlemg ×˙=uFin,vFinvuvu
12 ballotlemgun.1 φUFin
13 ballotlemgun.2 φVFin
14 ballotlemgun.3 φWFin
15 ballotlemgun.4 φVW=
16 indir VWU=VUWU
17 16 fveq2i VWU=VUWU
18 infi VFinVUFin
19 13 18 syl φVUFin
20 infi WFinWUFin
21 14 20 syl φWUFin
22 15 ineq1d φVWU=U
23 inindir VWU=VUWU
24 0in U=
25 22 23 24 3eqtr3g φVUWU=
26 hashun VUFinWUFinVUWU=VUWU=VU+WU
27 19 21 25 26 syl3anc φVUWU=VU+WU
28 17 27 eqtrid φVWU=VU+WU
29 difundir VWU=VUWU
30 29 fveq2i VWU=VUWU
31 diffi VFinVUFin
32 13 31 syl φVUFin
33 diffi WFinWUFin
34 14 33 syl φWUFin
35 15 difeq1d φVWU=U
36 difindir VWU=VUWU
37 0dif U=
38 35 36 37 3eqtr3g φVUWU=
39 hashun VUFinWUFinVUWU=VUWU=VU+WU
40 32 34 38 39 syl3anc φVUWU=VU+WU
41 30 40 eqtrid φVWU=VU+WU
42 28 41 oveq12d φVWUVWU=VU+WU-VU+WU
43 hashcl VUFinVU0
44 13 18 43 3syl φVU0
45 44 nn0cnd φVU
46 hashcl WUFinWU0
47 14 20 46 3syl φWU0
48 47 nn0cnd φWU
49 hashcl VUFinVU0
50 13 31 49 3syl φVU0
51 50 nn0cnd φVU
52 hashcl WUFinWU0
53 14 33 52 3syl φWU0
54 53 nn0cnd φWU
55 45 48 51 54 addsub4d φVU+WU-VU+WU=VUVU+WU-WU
56 42 55 eqtrd φVWUVWU=VUVU+WU-WU
57 unfi VFinWFinVWFin
58 13 14 57 syl2anc φVWFin
59 1 2 3 4 5 6 7 8 9 10 11 ballotlemgval UFinVWFinU×˙VW=VWUVWU
60 12 58 59 syl2anc φU×˙VW=VWUVWU
61 1 2 3 4 5 6 7 8 9 10 11 ballotlemgval UFinVFinU×˙V=VUVU
62 12 13 61 syl2anc φU×˙V=VUVU
63 1 2 3 4 5 6 7 8 9 10 11 ballotlemgval UFinWFinU×˙W=WUWU
64 12 14 63 syl2anc φU×˙W=WUWU
65 62 64 oveq12d φU×˙V+U×˙W=VUVU+WU-WU
66 56 60 65 3eqtr4d φU×˙VW=U×˙V+U×˙W